
COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

1

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE
== NOTIONS GÉNÉRALES ==

I) INTRODUCTION, NOTIONS GÉNÉRALES .. 2

I.1. Données et représentation vectorielle .. 3

I.2. Qu’est-ce que l’apprentissage statistique .. 5

I.3. Prédiction et interprétation ... 6

I.3.1. Prédiction et erreur irréductible associée .. 7

I.3.2. Interprétation .. 8

I.4. Comment est estimée la fonction de prédiction ... 8

I.4.1. Méthodes paramétriques .. 9

I.4.2. Méthodes non paramétriques ... 10

I.5. Apprentissage supervisé et non-supervisé .. 12

I.5.1. Apprentissage supervisé .. 12

I.5.2. Apprentissage non supervisé ... 12

I.6. Régression et classification .. 13

II) PERFORMANCES D’UN MODÈLE .. 14

II.1. Fonction de perte et risque empirique ... 14

II.2. Phénomène de sur-apprentissage .. 15

II.3. Performances d’un modèle en régression .. 16

II.4. Performances d’un modèle en classification .. 18

II.4.1. Taux de réussite .. 18

II.4.2. Taux de réussite équilibré en classification binaire .. 18

II.4.3. Taux de réussite équilibré en classification multi-classes 19

II.4.4. Matrice de confusion en classification binaire ... 19

II.4.5. Matrice de confusion en classification multi-classes ... 21

II.5. Jeu de données pour les tests ... 22

II.6. Normalisation des données ... 23

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

2

I) INTRODUCTION, NOTIONS GÉNÉRALES
L’intelligence artificielle (IA) recouvre un ensemble très large de problématiques et de
techniques, dont les contours varient selon que l’on insiste sur les objectifs (imiter,
reproduire, assister, comprendre) ou sur les méthodes mises en œuvre. Historiquement, l’IA
s’est structurée autour de questions fondatrices (dans un article de Turing publié en 1950,
puis dans un colloque organisé au Dartmouth College en 1956), et s’est progressivement
outillée pour traiter des tâches de décision, de perception ou d’analyse.

L'apprentissage peut être défini comme l'acquisition de connaissances et de compétences
par la pratique et l'expérience. Dans le cas d'un ordinateur, les compétences peuvent être
matérialisées par des algorithmes et la pratique correspond à l'utilisation des données
fournies à la machine.

On distingue trois ensembles inclus les uns dans les
autres : l'intelligence artificielle, très générale, qui inclut
l'apprentissage statistique (apprentissage automatique,
machine learning), qui lui-même inclut l'apprentissage
profond (deep learning).

L'intelligence artificielle trouve des applications dans tout type de domaines : traduction
automatique de textes, pilotage de véhicules autonomes, de robots, reconnaissance et
assistance vocales, génération d'images, reconnaissance de formes, de visages, imagerie,
jeux de stratégie, etc.

L'apprentissage statistique intervient dans des systèmes de repérage de comportements
d'une clientèle dans un but de publicité ciblée, dans la programmation de stratégies
automatisées en finance de marché, dans l'assistance au diagnostic médical...

Dans ce chapitre, on se place dans le cadre de l’apprentissage statistique. En apprentissage
statistique, le principe est d'utiliser un grand nombre de données pour que l'algorithme
apprenne une méthode qu'il saura utiliser sur des données nouvelles : alors qu'un
algorithme classique retourne un résultat à partir des données d'entrée, un algorithme
d'apprentissage retourne un algorithme classique qui sera appliqué à des données nouvelles.
L’enjeu n’est donc pas seulement de bien « répondre » sur les exemples déjà vus, mais de
généraliser à des entrées inédites, ce qui distingue un apprentissage utile d’une simple
mémorisation.

D’un point de vue algorithmique, cette démarche s’inscrit dans un pipeline assez standard.
On collecte ou constitue un jeu de données, on choisit une représentation adaptée des
objets étudiés (les « caractéristiques » ou features), on entraîne une méthode sur une partie
des données, puis on valide la qualité des résultats sur des données distinctes. Cette
structuration a une conséquence pratique importante : la nature et la diversité des données
d’entraînement conditionnent fortement la capacité de généralisation, et une base trop
petite ou peu représentative conduit souvent à des décisions peu fiables dès que l’on sort
des cas déjà rencontrés.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

3

I.1. Données et représentation vectorielle

Supposons que nous voulions étudier l’association entre la publicité et les ventes d’un
produit particulier. Le jeu de données Advertising contient les ventes de ce produit dans
200 marchés différents, ainsi que les budgets publicitaires du produit dans chacun de ces
marchés pour trois médias distincts : la télévision, la radio et la presse écrite. Les données
sont présentées à la Figure 1. Si nous déterminons qu’il existe une association entre la
publicité et les ventes, nous pourrons recommander au client d’ajuster les budgets
publicitaires, augmentant ainsi indirectement les ventes. Autrement dit, notre objectif est de
développer un modèle précis pouvant être utilisé pour prédire les ventes à partir des
budgets alloués aux trois médias.

Figure 1 : Ventes en fonction des budgets TV, radio et presse écrite, en milliers de dollars

Dans ce contexte, les budgets publicitaires sont des variables d’entrée, tandis que les ventes
constituent une variable de sortie. Les variables d’entrée sont généralement notées à l’aide
du symbole X, avec un indice pour les distinguer. Ainsi, X1 peut correspondre au budget TV,
X2 au budget radio et X3 au budget presse écrite. Les variables d’entrée portent différents
noms, comme prédicteurs, caractéristiques (features), variables indépendantes ou, parfois,
simplement variables. La variable de sortie — ici, les ventes — est souvent appelée la
réponse, cible, label, étiquette ou variable dépendante, et est généralement notée Y.

Ici, le jeu de données est un ensemble de couples {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, avec n = 200, où chaque
𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, (𝑥𝑖)3)

𝑇 ∈ ℝ3 décrit les 3 caractéristiques (budget TV, budget radio et
budget presse écrite) du vecteur des caractéristiques xi.

On utilise généralement une majuscule pour désigner le vecteur des caractéristiques X et la
variable de sortie Y « en général » : ce sont les entrées / sorties abstraites du problème
(souvent vues comme des variables aléatoires ou, plus simplement, comme des variables
génériques). Les minuscules désignent une valeur concrète observée de X ou de Y, c’est-à-
dire un exemple mesuré (une réalisation).
Le choix de représenter une observation par un vecteur 𝑥 ∈ ℝ𝑝 n’est pas anodin : il permet
de ramener des objets très différents (images, textes, mesures physiques, etc.) à un format
commun manipulable par des algorithmes. Sans entrer ici dans l’ingénierie de
caractéristiques, on retiendra l’idée suivante : une fois la représentation fixée, l’algorithme

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

4

travaille essentiellement dans un espace vectoriel, où des opérations de comparaison, de
regroupement et de décision deviennent possibles.

Imaginons par exemple que l’on souhaite mettre en place un algorithme d’apprentissage
automatique afin d’apprendre à un ordinateur à distinguer des images de chats de celles
contenant des chiens (Figure 2). Ce genre de tâche, où l’on cherche à apprendre à un
ordinateur à distinguer différents types ou classes d’objets (ici, des chats et des chiens), est
appelé, dans le jargon de l’apprentissage automatique, un problème de classification.

Figure 2 : ensemble d’entraînement composé de six images de chats et de six images de chiens

Pour faire la différence entre des images contenant des chats et celles contenant des chiens,
nous (les humains) utilisons la couleur, la taille, la forme des oreilles ou du museau, et/ou
une combinaison de ces caractéristiques pour distinguer les deux. Autrement dit, nous ne
regardons pas une image comme une simple collection de nombreux petits pixels carrés.
Nous en extrayons des détails plus grossiers, ou des caractéristiques, afin d’identifier ce que
nous observons. Il en va de même pour les ordinateurs. Pour entraîner avec succès un
ordinateur à réaliser cette tâche (et, plus généralement, toute tâche d’apprentissage
automatique) nous devons lui fournir des caractéristiques correctement conçues.

Concevoir des caractéristiques de qualité n’est généralement pas une tâche triviale, car elle
peut fortement dépendre de l’application. Par exemple, une caractéristique comme la
couleur serait moins utile pour discriminer des chats et des chiens (puisque de nombreux
chats et chiens ont des couleurs de pelage similaires) qu’elle ne le serait pour distinguer des
grizzlis et des ours polaires. De plus, extraire ces caractéristiques à partir d’un jeu de
données d’entraînement peut également être difficile. Par exemple, si certaines de nos
images d’entraînement étaient floues ou prises sous un angle qui ne permettait pas de voir
correctement l’animal, les caractéristiques que nous avons conçues pourraient ne pas être
correctement extraites.

Pour notre exemple, on peut cependant imaginer extraire facilement deux caractéristiques
de chaque image : la taille du museau relative à la taille de la tête, allant de petite à grande,
et la forme des oreilles, allant de ronde à pointue. Avec ce choix de caractéristiques, chaque
image peut désormais être représentée par seulement deux nombres : un nombre
exprimant la taille relative du museau, et un autre capturant le caractère pointu ou rond des
oreilles. Autrement dit, nous pouvons représenter chaque image de notre ensemble
d’entraînement dans un espace bidimensionnel à l’aide de vecteurs de caractéristiques, où la

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

5

taille du museau et la forme des oreilles constituent respectivement les axes de
coordonnées horizontal et vertical (Figure 3) :

Figure 3 : Représentation dans l’espace des caractéristiques du jeu de données

I.2. Qu’est-ce que l’apprentissage statistique

Plus généralement, supposons que nous observions une réponse quantitative y et p
caractéristiques différentes : x1, x2, …, xp. Nous supposons qu’il existe une relation entre Y et
X = (X1, X2, …, Xp), relation qui peut s’écrire sous la forme très générale suivante :

𝑌 = 𝑓(𝑋) + 𝜀

Ici, f est une fonction fixe mais inconnue de X1, …, Xp, et ε est un terme d’erreur aléatoire,
indépendant de X et de moyenne nulle. Dans cette formulation, f représente l’information
systématique que X fournit à propos de Y.

Comme autre exemple, considérons le panneau de gauche de la Figure 4, qui représente le
revenu en fonction du nombre d’années d’études pour 30 individus du jeu de données
Revenu.

Figure 4 : Jeu de données Revenu

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

6

Le graphique suggère qu’il pourrait être possible de prédire le revenu à partir du nombre
d’années d’études. Cependant, la fonction f qui relie la variable d’entrée à la variable de
sortie est, en général, inconnue. Dans cette situation, il faut estimer f à partir des points
observés. Étant donné que Revenu est un jeu de données simulé, f est connue et elle est
représentée par la courbe bleue dans le panneau de droite de la Figure 4. Les segments
verticaux représentent les termes d’erreur ε. Nous remarquons que certaines des 30
observations se situent au-dessus de la courbe bleue et d’autres en dessous ; globalement,
les erreurs ont une moyenne approximativement nulle.

En général, la fonction de prédiction (ou prédicteur) f peut dépendre de plus d’une variable
d’entrée. Dans la Figure 5, nous représentons le revenu en fonction du nombre d’années
d’études et de l’ancienneté. Ici, f est une surface bidimensionnelle qui doit être estimée à
partir des données observées.

Figure 5 : Revenu en fonction du nombre d’années d’étude et de l’ancienneté

En substance, l’apprentissage statistique désigne un ensemble d’approches visant à estimer
f. Dans ce chapitre d’introduction, nous allons voir certains des principaux concepts
théoriques qui interviennent dans l’estimation de f, ainsi que des outils permettant d’évaluer
les estimations obtenues.

I.3. Prédiction et interprétation

Il existe deux raisons principales pour lesquelles nous pouvons souhaiter estimer f : la
prédiction et l’interprétation (aussi appelée inférence). Dans certains contextes, l’enjeu
principal est de prédire correctement la sortie pour de nouvelles entrées ; dans d’autres, on
cherche aussi à comprendre quels facteurs expliquent la sortie, ce qui suppose un modèle
plus interprétable. Les méthodes abordées dans ce cours sont surtout motivées par l’objectif
prédictif.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

7

I.3.1. Prédiction et erreur irréductible associée

Dans de nombreuses situations, un ensemble d’entrées X est facilement disponible, mais la
sortie Y ne peut pas être obtenue aisément. Dans ce contexte, puisque le terme d’erreur a
une moyenne nulle, on peut prédire Y à l’aide de :

𝑌̂ = 𝑓(𝑋)

… où 𝑓 représente notre estimation de f (fonction de prédiction), et 𝑌̂ la prédiction

correspondante de Y. Dans ce contexte, 𝑓 est souvent considéré comme une « boîte noire »,

au sens où l’on ne s’intéresse généralement pas à la forme exacte de 𝑓, pourvu qu’elle
fournisse des prédictions précises de Y.

À titre d’exemple, supposons que X1, …, Xp soient des caractéristiques d’un échantillon de
sang d’un patient, facilement mesurables en laboratoire, et que Y soit une variable codant le
risque, pour ce patient, de subir une réaction indésirable grave à un médicament particulier.
Il est naturel de chercher à prédire Y à partir de X, car nous pouvons ainsi éviter
d’administrer le médicament en question aux patients qui présentent un risque élevé de
réaction indésirable, c’est-à-dire aux patients pour lesquels l’estimation de Y est élevée.

La précision de 𝑌̂ en tant que prédiction de Y dépend de deux quantités, que nous

appellerons l’erreur réductible et l’erreur irréductible. En général, 𝑓 ne sera pas une
estimation parfaite de f, et cette imperfection introduira une certaine erreur. Cette erreur

est dite réductible, car il est potentiellement possible d’améliorer la précision de 𝑓 en
utilisant la technique d’apprentissage statistique la plus appropriée pour estimer f.
Toutefois, même s’il était possible d’obtenir une estimation parfaite de f, de sorte que notre

réponse estimée prenne la forme 𝑌̂ = 𝑓(𝑋), notre prédiction comporterait malgré tout une
part d’erreur. En effet, Y dépend également de ε, qui, par définition, ne peut pas être prédit
à partir de X. Par conséquent, la variabilité associée à ε affecte aussi la précision de nos
prédictions. On parle alors d’erreur irréductible, car, quelle que soit la qualité avec laquelle
nous estimons f, nous ne pouvons pas réduire l’erreur introduite par ε.

La quantité ε peut contenir des variables non mesurées qui seraient utiles pour prédire Y :
puisque nous ne les mesurons pas, f ne peut pas les utiliser pour la prédiction. La quantité ε
peut aussi contenir une variabilité impossible à mesurer. Par exemple, le risque d’une
réaction indésirable peut varier, pour un patient donné et un jour donné, en fonction de
variations de fabrication du médicament lui-même ou de l’état général de bien-être du
patient ce jour-là.

Considérons une estimation donnée 𝑓 et un ensemble de prédicteurs X, ce qui conduit à la

prédiction 𝑌̂ = 𝑓(𝑋). Supposons un instant que 𝑓 et X soient tous deux fixés, de sorte que la
seule variabilité provienne de ε. On a alors l’erreur quadratique moyenne de prédiction :

𝔼 [(𝑌 − 𝑌̂)
2
] = 𝔼 [(𝑓(𝑋) + 𝜀 − 𝑓(𝑋))

2

] = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

+ 2(𝑓(𝑋) − 𝑓(𝑋)) 𝜀 + 𝜀2]

 = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

]
⏟

𝑅é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

+ 𝑉𝑎𝑟(𝜀)⏟
𝐼𝑟𝑟é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

L’erreur irréductible fournit toujours une limite supérieure à la précision de notre prédiction
de Y. Cette limite est presque toujours inconnue en pratique.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

8

I.3.2. Interprétation

Souvent, on cherche à comprendre l’association entre Y et les caractéristiques X1, …, Xp.
Dans ce cas, nous cherchons à estimer f, mais notre objectif n’est pas nécessairement de

prédire Y. Dès lors, 𝑓 ne peut pas être considérée comme une « boîte noire », car nous
devons en connaître la forme exacte.

Par exemple, considérons les données Advertising illustrées à la Figure 1. On peut
chercher à répondre à des questions telles que :

- Quels médias sont associés aux ventes ?
- Quels médias génèrent la plus forte augmentation des ventes ?
- De quelle ampleur est l’augmentation des ventes associée à une augmentation

donnée de la publicité à la télévision ?

Cette situation relève du problème de l’interprétation. Un autre exemple consiste à
modéliser la marque d’un produit qu’un client pourrait acheter à partir de variables telles
que le prix, l’emplacement du magasin, les niveaux de remise, le prix des concurrents, etc.
Dans ce contexte, on s’intéresse surtout à l’association entre chaque variable et la
probabilité d’achat. Par exemple, dans quelle mesure le prix du produit est-il associé aux
ventes ? Il s’agit d’un exemple de modélisation orientée vers l’interprétation.

Selon que l’objectif final est la prédiction ou l’interprétation, ou même une combinaison des
deux, différentes méthodes d’estimation de f peuvent être appropriées. Par exemple, les
modèles linéaires permettent une interprétation relativement simple et interprétable, mais
peuvent ne pas fournir des prédictions aussi précises que certaines autres approches. À
l’inverse, certaines approches fortement non linéaires, peuvent potentiellement offrir des
prédictions très précises de Y, mais au prix d’un modèle moins interprétable, pour lequel
l’interprétation est plus difficile.

Nous allons étudier dans ce cours deux méthodes, parmi lesquelles k-NN (k plus proches
voisins). En régression ou classification, cette méthode correspond à une estimation non
paramétrique et fortement non linéaire de f : on prédit Y à partir de la moyenne (ou
majorité) des voisins proches. Cette méthode peut donner de très bonnes performances de
prédiction si la structure est locale et si k et la métrique sont bien choisis, mais le « modèle »
est peu interprétable, et l’interprétation est plus difficile.

I.4. Comment est estimée la fonction de prédiction

Il existe de nombreuses approches linéaires et non linéaires pour estimer la fonction de
prédiction. Dans ce cours, nous allons étudier la méthode k-NN qui est une méthode non
paramétrique. Vous voyez également l’utilisation de réseaux de neurones si vous suivez
l’option SI, qui sont des modèles paramétriques.

Ces méthodes partagent généralement certaines caractéristiques et nous allons ici établir un
aperçu de ces caractéristiques communes. Nous supposerons toujours que nous avons
observé un ensemble de n points de données distincts. Par exemple, dans la Figure 4, nous
avons observé n = 30 points de données. Ces observations sont appelées des données
d’apprentissage, car nous les utiliserons pour entraîner, ou « enseigner », à notre méthode
comment estimer f.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

9

Soit (𝑥𝑖)𝑗 la valeur du j-ième vecteur des caractéristiques (ou variable d’entrée) pour

l’observation i, où i = 1, 2, …, n et j = 1, 2, …, p. De même, soit y𝑖  F la variable réponse pour
la i-ième observation (F peut être un ensemble fini ou un espace vectoriel). Nos données

d’apprentissage sont alors les couples {(x1, y1), … , (x𝑛, y𝑛)}, où 𝑥𝑖 = ((𝑥𝑖)1, . . . , (𝑥𝑖)𝑝)
𝑇

.

Notre objectif est d’appliquer une méthode d’apprentissage statistique aux données
d’apprentissage afin d’estimer la fonction inconnue f. Autrement dit, nous voulons trouver

une fonction 𝑓 telle que 𝑌 ≈ 𝑓(𝑋) pour toute observation (X, Y). De manière générale, la
plupart des méthodes d’apprentissage statistique visant cet objectif peuvent être classées
comme paramétriques ou non paramétriques.

I.4.1. Méthodes paramétriques

Les méthodes paramétriques reposent sur une approche fondée sur la création d’un modèle
en deux étapes.

1. Tout d’abord, nous formulons une hypothèse concernant la « structure » de f. Par
exemple, une hypothèse très simple consiste à supposer que f est linéaire en X (on
suppose ici que 𝐹 = ℝ) :

𝑓(𝑋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝

Une fois que l’on a supposé que f est linéaire, le problème d’estimation de f est
grandement simplifié. Au lieu d’avoir à estimer une fonction p-dimensionnelle
entièrement arbitraire f(X), il suffit d’estimer les p + 1 coefficients β0, β1, …, βp.

2. Après avoir choisi un modèle, il nous faut une procédure qui utilise les données

d’apprentissage pour ajuster (fit) ou entraîner le modèle. Dans le cas de l’ajustement
du modèle linéaire précédent, nous devons estimer les paramètres β0, β1, …, βp.
Autrement dit, nous voulons trouver des valeurs de ces paramètres telles que :

𝑌 ≈ 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝

L’approche la plus courante pour ajuster le modèle est la méthode des moindres
carrés. Elle consiste à choisir les paramètres du modèle en minimisant la somme des
carrés des écarts entre les valeurs observées 𝑦𝑖 et les valeurs prédites par le modèle
𝑦̂𝑖. Autrement dit, on ajuste la droite (ou l’hyperplan) qui rend ces erreurs
globalement aussi petites que possible au sens quadratique. Une autre méthode,
utilisée pour ajuster les paramètres des réseaux de neurones, est la méthode par
descente du gradient. C’est une méthode d’optimisation itérative qui ajuste
progressivement les paramètres d’un modèle pour diminuer une fonction de perte.

Ces méthodes sont dites paramétriques, car elle ramènent l’estimation de f à l’estimation
d’un nombre fini de paramètres. En supposant une forme paramétrique pour f, on simplifie
le problème : il est en général plus facile d’estimer des paramètres que d’ajuster une
fonction f totalement arbitraire.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

10

La Figure 6 montre un exemple de l’approche paramétrique appliquée aux données Revenus
de la Figure 5Figure 4. Le modèle linéaire est de la forme :

𝑟𝑒𝑣𝑒𝑛𝑢 = 𝛽0 + 𝛽1 ∙ 𝑛𝑖𝑣𝑒𝑎𝑢_𝑒𝑡𝑢𝑑𝑒 + 𝛽2 ∙ 𝑎𝑛𝑐𝑖𝑒𝑛𝑛𝑒𝑡é

Les observations sont représentées par les points rouges et le plan en jaune est l’hyperplan
résultant de l’ajustement des paramètres du modèle :

Figure 6 : Un modèle linéaire ajusté par la méthode des moindres carrés.

En comparant la Figure 5 à la Figure 6, on voit que l’ajustement linéaire présenté dans la
Figure 6 n’est pas tout à fait correct : la vraie fonction f présente une certaine courbure qui
n’est pas reproduite par l’ajustement linéaire. Cependant, l’ajustement linéaire semble tout
de même faire un travail raisonnable pour mettre en évidence la relation positive entre le
nombre d’années d’études et le revenu, ainsi que la relation un peu moins positive entre
l’ancienneté et le revenu. Il est possible qu’avec un nombre d’observations aussi réduit, ce
soit le mieux que l’on puisse faire.

L’inconvénient potentiel d’une approche paramétrique est que le modèle que nous
choisissons ne correspond généralement pas à la forme réelle, inconnue, de f. Si le modèle
retenu est trop éloigné de la vraie fonction f, alors notre estimation sera médiocre. On peut
essayer de limiter ce problème en choisissant des modèles plus flexibles, capables d’ajuster
de nombreuses formes fonctionnelles possibles de f (tels que les réseaux de neurones).
Mais, en général, ajuster un modèle plus flexible impose d’estimer un plus grand nombre de
paramètres. Ces modèles plus complexes peuvent alors conduire à un phénomène appelé
surapprentissage (overfitting) : ils épousent trop fidèlement les erreurs, ou le bruit, présents
dans les données.

I.4.2. Méthodes non paramétriques

Les méthodes non paramétriques ne font pas d’hypothèses explicites sur la forme
fonctionnelle de f. À la place, elles cherchent une estimation de f qui se rapproche autant
que possible des points de données.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

11

Ces approches peuvent présenter un avantage majeur par rapport aux approches
paramétriques : en évitant de supposer une forme particulière pour f, elles ont le potentiel
d’ajuster avec précision une plus grande variété de formes possibles pour f. Toute approche
paramétrique comporte le risque que la structure choisie pour estimer f soit très différente
de la vraie f, auquel cas le modèle obtenu n’ajustera pas bien les données. À l’inverse, les
approches non paramétriques évitent complètement ce danger, puisqu’elles ne font
essentiellement aucune hypothèse sur la forme de f.

Mais les approches non paramétriques souffrent aussi d’un inconvénient important : comme
elles ne ramènent pas l’estimation de f à un petit nombre de paramètres, il faut un très
grand nombre d’observations (bien plus que ce qui est généralement nécessaire avec une
approche paramétrique) pour obtenir une estimation précise de f.

Un exemple d’approche non paramétrique pour ajuster les données Revenus est présenté
dans la Figure 7 (à gauche). Cette approche n’impose aucun modèle prédéfini à f et cherche
plutôt à produire une estimation de f aussi proche que possible des données observées, tout
en imposant que l’ajustement — c’est-à-dire la surface jaune de la Figure 7 — soit lisse :

Figure 7 : Exemples de modèles non paramétriques utilisés pour estimer les données Revenus

Dans ce cas, l’ajustement non paramétrique fournit une estimation remarquablement
précise de la vraie fonction f présentée dans la Figure 5.

Pour ajuster le modèle, on doit choisir un niveau de lissage. La Figure 7 montre à droite le
même ajustement avec un niveau de lissage plus faible que celle de gauche, autorisant une
courbe plus « rugueuse ». L’estimation obtenue ajuste alors parfaitement les données
observées. Toutefois, la « surface » de la Figure 7 à droite est beaucoup plus variable que la
vraie fonction f (Figure 5). C’est un exemple de surapprentissage (overfitting) des données,
évoqué précédemment.

Le surapprentissage est une situation indésirable, car l’ajustement obtenu ne fournira pas
des estimations fiables de la réponse sur de nouvelles observations qui ne faisaient pas
partie du jeu de données d’entraînement initial.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

12

I.5. Apprentissage supervisé et non-supervisé

On distingue classiquement deux cadres majeurs, qui structurent l’ensemble de ce cours :
l’apprentissage supervisé et l’apprentissage non supervisé.

I.5.1. Apprentissage supervisé

En apprentissage supervisé, chaque observation xi est accompagnée d’une information-cible
yi (un label, une classe, une valeur numérique). Nous cherchons à ajuster un modèle reliant
la réponse aux vecteurs des caractéristiques, soit dans le but de prédire le plus précisément
possible la réponse pour de nouvelles observations (prédiction), soit pour mieux
comprendre la relation entre la réponse et les prédicteurs (inférence/interprétation).

Ainsi, un jeu de données supervisé est un ensemble fini de couples {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, où chaque

𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, . . , (𝑥𝑖)𝑝) ∈ ℝ
𝑝 décrit p caractéristiques et 𝑦𝑖 ∈ 𝐹 décrit la réponse

associée (F peut être un ensemble fini ou un espace vectoriel). Les exemples que nous avons
évoqués jusqu’ici relèvent tous de l’apprentissage supervisé.

Nous aborderons dans ce cours l’apprentissage supervisé à travers la méthode k-NN.

I.5.2. Apprentissage non supervisé

L’apprentissage non supervisé correspond à une situation un peu plus délicate : pour chaque
observation i = 1, …, n, on observe un vecteur de mesures xi, mais aucune réponse associée
yi. Il n’est donc pas possible d’ajuster un modèle de régression linéaire, puisqu’il n’y a pas de
variable réponse à prédire. Dans ce cadre, on travaille en quelque sorte « à l’aveugle » : on
parle d’apprentissage non supervisé parce qu’il manque une variable réponse qui pourrait
guider (superviser) l’analyse.

Ce qu’on cherche à comprendre ici, ce sont les relations entre les variables, ou bien entre les
observations elles-mêmes. Un outil classique dans ce contexte est l’analyse de clusters
(clustering). L’objectif du clustering est de déterminer, à partir de x1, …, xn, si les
observations se répartissent en groupes relativement distincts. Par exemple, dans une étude
de segmentation de marché, on peut mesurer plusieurs caractéristiques (variables) de
clients potentiels, telles que le code postal, le revenu du foyer et les habitudes d’achat. On
peut penser que ces clients se répartissent en groupes, par exemple de « gros » et de
« petits » acheteurs. Si l’information sur les dépenses de chaque client était disponible, une
analyse supervisée serait possible. Mais cette information ne l’est pas : on ne sait pas, pour
chaque client, s’il appartient au groupe des gros acheteurs. Dans ce cas, on peut tenter de
regrouper les clients à partir des variables mesurées afin d’identifier des groupes distincts.
Mettre en évidence de tels groupes peut être intéressant, car ils peuvent différer selon une
propriété d’intérêt, comme les habitudes de dépense.

La Figure 8 fournit une illustration simple du problème de clustering. On y a représenté 150
observations mesurées selon deux variables, X1 et X2. Chaque observation appartient à l’un
des trois groupes distincts. À titre illustratif, les membres de chaque groupe ont été tracés
avec des couleurs et des symboles différents. Cependant, en pratique, l’appartenance à un
groupe est inconnue, et l’objectif est de déterminer à quel groupe appartient chaque
observation.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

13

Dans le panneau de gauche de la Figure 8, c’est une tâche relativement facile, car les
groupes sont bien séparés. À l’inverse, le panneau de droite illustre une situation plus
difficile, dans laquelle il existe un certain recouvrement entre les groupes. On ne peut alors
pas attendre d’une méthode de clustering qu’elle affecte tous les points situés dans la zone
de recouvrement à leur « bon » groupe (bleu, vert ou orange).

Figure 8 : Deux exemples de jeux de données de clustering comportant trois groupes

Dans les exemples présentés à la Figure 8, il n’y a que deux variables. On peut donc
simplement examiner visuellement les nuages de points pour repérer des clusters.
Cependant, en pratique, on rencontre souvent des jeux de données comportant bien plus
que deux variables. Dans ce cas, il n’est pas facile de représenter les observations
graphiquement.

Par exemple, si le jeu de données comporte p variables, on peut tracer p(p−1)/2 nuages de
points distincts, et une inspection visuelle n’est tout simplement pas une méthode viable
pour identifier des clusters. C’est pourquoi des méthodes de clustering automatisées sont
importantes. Nous abordons dans ce cours l’apprentissage non supervisé et le clustering
avec l’algorithme des k-moyennes (k-means).

I.6. Régression et classification

Les variables peuvent être de nature quantitative ou qualitative (aussi appelées
catégorielles). Les variables quantitatives prennent des valeurs numériques. Par exemple :
l’âge, la taille ou le revenu d’une personne, la valeur d’une maison, ou le prix d’une action.

À l’inverse, les variables qualitatives prennent leurs valeurs dans l’une des K classes (ou
catégories) possibles. Par exemple : l’état matrimonial d’une personne (marié ou non), la
marque d’un produit acheté (marque A, B ou C), le fait de faire défaut sur une dette (oui ou
non), ou encore un diagnostic médical (rhume, grippe ou autre infection respiratoire).

On appelle généralement problèmes de régression ceux dont la réponse est quantitative, et
problèmes de classification ceux dont la réponse est qualitative. Certaines méthodes
statistiques, comme les K plus proches voisins que nous allons étudier dans ce cours,
peuvent être utilisées aussi bien lorsque la réponse est quantitative que lorsqu’elle est
qualitative.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

14

Plus formellement, considérons un jeu de données supervisé constitué de couples

{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, où chaque 𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, . . , (𝑥𝑖)𝑝) ∈ ℝ
𝑝 décrit p caractéristiques et 𝑦𝑖 ∈

𝐹 décrit la réponse associée. Deux types de problèmes se posent :

- Si F est un ensemble fini, on parle de problème de classification. Dans ce cas, on peut
supposer que F est de la forme 𝐹 = {0, 1, . . ., 𝑐 − 1}, où c est le nombre de classes
souhaitées. Dans le cas particulier où c = 2, on a F = {0, 1}, et l'on parle de
classification binaire. La reconnaissance optique de caractères (ROC) (optical
character recognition, OCR), la reconnaissance de fleurs sont des problèmes de
classification. Le filtrage des spams est quant à lui un problème de classification
binaire.

- Si F est un espace vectoriel, on parle de problème de régression. La prédiction des
recettes d'un film, de l'âge d'un internaute ou du nombre de clics sur un lien de site
internet sont des problèmes de régression.

II) PERFORMANCES D’UN MODÈLE
Pour évaluer la performance d’un modèle sur un jeu de données, il faut disposer d’un moyen
de mesurer à quel point ses prédictions correspondent réellement aux données observées.
Autrement dit, il faut quantifier dans quelle mesure la réponse prédite pour une observation
est proche de la réponse vraie associée à cette observation.

II.1. Fonction de perte et risque empirique

Pour savoir si un modèle est concluant, on définit une fonction de perte ℓ: 𝐹 × 𝐹 → ℝ+.

Pour un problème de classification, on peut poser :

ℓ(𝑦, 𝑦̂𝑖) = 𝕀(𝑦 ≠ 𝑦̂𝑖) = 1 − 𝛿𝑦,𝑦̂𝑖 , 𝑦̂𝑖 = 𝑓(𝑥𝑖)

Pour un problème de régression :

ℓ(𝑦, 𝑦̂𝑖) = ‖𝑦 − 𝑦̂𝑖‖
2

Le prédicteur f doit alors minimiser le risque théorique :

𝑅(𝑓) = 𝐸(ℓ(𝑦, 𝑦̂𝑖))

… l’espérance étant prise selon la loi (inconnue) du couple (x, y).

Comme cette loi est inconnue, sous l’hypothèse que les données sont des tirages
indépendants et identiquement distribués (i.i.d.) et que la perte admet une moyenne finie, la
moyenne empirique de la perte est une bonne approximation de son espérance quand n est
grand. On l’approche donc par le risque empirique (moyenne sur un échantillon de n
données) :

𝑅̂𝑛(𝑓) =
1

𝑛
∑ℓ(𝑦𝑖, 𝑦̂𝑖)

𝑛

𝑖=1

L’apprentissage par minimisation du risque empirique consiste alors à choisir 𝑓 parmi une

famille de fonctions ℱ (une « classe de modèles ») de manière à rendre 𝑅̂𝑛(𝑓) aussi petit

que possible.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

15

II.2. Phénomène de sur-apprentissage

La fonction 𝑓 n’est pas fixée à l’avance : elle est choisie dans une famille de fonctions ℱ en
regardant les données au fur et à mesure de l’apprentissage. Or, plus la classe ℱ est riche
(beaucoup de formes possibles), plus il devient facile de trouver une fonction qui « colle »
très bien aux données d’apprentissage, y compris aux erreurs de mesure et au bruit. C’est ce
qu’on appelle le sur-apprentissage (overfitting) : la règle apprend des détails accidentels du
jeu d’apprentissage au lieu d’apprendre la tendance générale.

En conséquence :

- Si ℱ est très flexible, on peut obtenir un risque empirique très petit (erreur
d’entraînement faible), mais la performance sur des nouvelles données peut être
mauvaise (erreur de test élevée), car le modèle a « mémorisé » du bruit.

- Si ℱ est trop rigide, la règle ne peut pas s’adapter : elle commet une erreur
d’entraînement déjà élevée et généralise mal aussi (sous-ajustement).

Pour illustrer ce phénomène, utilisons un jeu de données construit à partir d’une sinusoïdale
parfaite et ajoutons-y aléatoirement du bruit à la sortie (ici sur P = 21 points) :

Figure 9 : Sinusoïde originale (gauche) et jeu de données bruité (droite)

La Figure 10 illustre l’ajustement non linéaire entièrement optimisé de deux modèles
appliqués à ces données, utilisant respectivement un modèle polynomial (ligne du haut) et
un réseau de neurones (ligne du bas).

Figure 10 : Ajustement des différents modèles

On remarque que les deux modèles sous-ajustent les données lorsqu’on n’utilise qu’un seul
paramètre B = 1 (colonne de gauche). Ce sous-ajustement est une conséquence directe de
l’utilisation de modèles de faible flexibilité, qui produisent des ajustements trop simples
pour représenter correctement la structure sous-jacente des données qu’ils cherchent à
approximer.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

16

On constate aussi que chaque modèle s’améliore lorsque l’on augmente B, mais seulement
jusqu’à un certain point : au-delà, chaque modèle ajusté devient trop complexe, commence
à paraître excessivement irrégulier, et ressemble peu au phénomène sinusoïdal qui a
initialement généré les données.

De tels modèles sur-ajustés, bien qu’ils représentent très bien les données actuelles, seront
de mauvais prédicteurs pour de nouvelles données générées par le même processus.

II.3. Performances d’un modèle en régression

Dans le cadre de la régression, la mesure la plus couramment utilisée est l’erreur
quadratique moyenne (MSE, mean squared error), qui utilise le carré de la norme
euclidienne comme fonction de perte et définie par :

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

Le MSE est faible lorsque les réponses prédites sont très proches des réponses vraies, et il
est élevé lorsque, pour certaines observations, les réponses prédites et les réponses vraies
diffèrent fortement.

Après avoir défini la MSE, on introduit souvent la RMSE (Root Mean Squared Error), définie
comme la racine carrée de la MSE. L’intérêt principal de cette transformation est d’obtenir
une mesure d’erreur dans la même unité que la variable réponse Y : alors que la MSE
s’exprime en « unités au carré », la RMSE se lit directement comme une erreur typique (par
exemple en euros, en mètres, etc.), ce qui facilite l’interprétation et la comparaison de
modèles sur une même tâche.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑛

𝑖=1

Un inconvénient de l’utilisation de l’erreur quadratique (que l’on minimise pour obtenir les
paramètres optimaux d’un modèle paramétrique) est que le fait de mettre l’erreur au carré
augmente l’importance des grandes erreurs. En particulier, pour des erreurs de norme
supérieure à 1, la mise au carré amplifie fortement ces valeurs. Cela oblige les coefficients
appris à produire un ajustement qui cherche surtout à réduire ces grandes erreurs, parfois
dues à des valeurs aberrantes (outliers) dans le jeu de données. Cela tend à produire des
modèles qui sur-ajustent (overfit) les valeurs aberrantes.

Notons que la RMSE ne rend pas la mesure plus robuste aux valeurs aberrantes : comme elle
repose toujours sur des écarts au carré, les grandes erreurs restent fortement pénalisées.
Minimiser la RMSE ou la MSE revient au même, car la racine carrée est une fonction
croissante.

La Figure 11 illustre ce phénomène : le jeu de données peut dans l’ensemble être
correctement décrit par un modèle linéaire, à l’exception d’une seule valeur aberrante. Les
paramètres d’un modèle linéaire sont ajustés en utilisant l’erreur MSE. L’ajustement ainsi

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

17

obtenu ne représente pas bien la majorité des points : il se courbe nettement vers le haut
dans le but de réduire la grande erreur quadratique associée au point aberrant isolé.

Figure 11 : Ajustement d'un modèle linéaire sur le jeu de données avec une valeur aberrante

Pour minimiser l’impact des valeurs aberrantes, une alternative consiste alors à remplacer
l’erreur quadratique par une erreur absolue. La moyenne de ces écarts absolus sur un
ensemble de données définit la déviation absolue moyenne (MAD – Mean Absolute
Deviation) ou encore l’erreur absolue relative moyenne (MARE – Mean Absolute Relative
Error) :

𝑀𝐴𝐷 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 𝑀𝐴𝑅𝐸 =
1

𝑛
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑛

𝑖=1

La Figure 12 présente le résultat de l’ajustement d’un modèle linéaire en minimisant, d’une
part, le critère des moindres carrés et, d’autre part, le critère des écarts absolus, en utilisant
le jeu de données de la Figure 11. Le critère des moindres carrés est tracé en pointillés, et le
critère des écarts absolus en trait plein. En examinant ces courbes, on constate que
l’ajustement en utilisant les écarts absolus est moins influencé par la valeur aberrante et suit
mieux la majorité des points. Cela constitue, à lui seul, un indice que le premier conduit à un
ajustement sensiblement meilleur que les moindres carrés.

Figure 12 : Impact des deux mesures sur l’ajustement des paramètres du modèle

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

18

La MAD est surtout meilleure pour gérer les valeurs aberrantes et la MSE reste très utilisée
pour plusieurs raisons :

- Ses propriétés mathématiques font qu’elle est plus simple à optimiser que la MAD et
conduit à des calculs rapides ;

- Minimiser la MSE correspond à un choix naturel si l’on suppose des erreurs
« gaussiennes » (bruit à peu près normal) ;

- Pénaliser les grandes erreurs n’est pas toujours souhaitable car si les grosses erreurs
coûtent très cher (sécurité, contrôle, finance), on préfère parfois un critère qui
« punit » davantage les écarts importants ;

- Dans beaucoup de modèles (réseaux de neurones notamment), la perte quadratique
est compatible avec des méthodes d’optimisation simples et stables. La perte
absolue peut fonctionner, mais elle peut rendre l’entraînement moins stable ou plus
lent selon les cas.

II.4. Performances d’un modèle en classification

II.4.1. Taux de réussite

Dans le cas d'un problème de classification, on effectue en général une stratification des
données : c'est une partition particulière dans laquelle la proportion de données dans
chaque classe est la même que dans l'échantillon initial.

L’approche la plus courante pour quantifier la précision de la fonction de prédiction 𝑓 est
alors de mesurer son taux de réussite (accuracy), notée Acc. Il s’agit du pourcentage
d’exemples du jeu de données d’apprentissage dont le label est correctement prédit par le
modèle, c’est-à-dire :

𝐴𝑐𝑐 =
1

𝑛
∑𝛿𝑦𝑖,𝑦̂𝑖

𝑛

𝑖=1

Le taux de réussite varie de 0 (aucun point n’est correctement classé) à 1 (tous les points
sont correctement classés).

II.4.2. Taux de réussite équilibré en classification binaire

Le taux de réussite est une mesure de base très pertinente pour évaluer la performance d’un
classifieur entraîné. Cependant, dans certains scénarios, elle peut donner une image
incomplète de la qualité réelle de la résolution du problème de classification.

Par exemple, lorsque les classes d’un jeu de données sont fortement déséquilibrées — c’est-
à-dire lorsqu’une classe contient beaucoup plus d’exemples que l’autre — le taux de réussite
perd une grande partie de sa valeur comme métrique de qualité. En effet, si une classe
domine largement, un taux de réussite proche de 1 peut être trompeur. Supposons par
exemple qu’une classe représente 95 % des données : un classifieur naïf qui attribue
systématiquement l’étiquette de la classe majoritaire à tous les points obtient un taux de
réussite de 95 %. Pourtant, dans ce cas, « se tromper sur 5 % » revient à mal classer
entièrement l’autre classe. Une manière simple d’améliorer la métrique du taux de réussite
est de calculer le taux de réussite (taux de bonne classification) sur chaque classe
séparément, puis de faire la moyenne.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

19

Considérons le cas d’une classification binaire où F = {0, 1}. Si l’on note Ω0 l’ensemble des
indices des points dont le label vaut yi = 0, et Ω1 l’ensemble des indices des points dont le
label vaut yi = 1, on peut alors calculer, séparément pour chaque classe, son taux de
réussite :

𝐴𝑐𝑐0 =
1

|Ω0|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω0

 𝐴𝑐𝑐1 =
1

|Ω1|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω1

… où |Ω0| et |Ω1| désignent respectivement le nombre de points appartenant aux classes 0
et 1. On peut ensuite regrouper ces deux mesures en une seule valeur en prenant la
moyenne. Cette métrique combinée s’appelle le taux de réussite équilibré :

𝐴𝑐𝑐_𝑒𝑞𝑢 =
𝐴𝑐𝑐0 + 𝐴𝑐𝑐1

2

Le taux de réussite équilibré varie entre 0 et 1. Lorsqu’elle vaut 0, aucun point n’est
correctement classé ; lorsque les deux classes sont classées parfaitement, on a Acc_equ = 1.
Les valeurs intermédiaires entre 0 et 1 mesurent à quel point, en moyenne, chacune des
deux classes est bien classée prise séparément. Par exemple, si une classe est entièrement
bien classée et l’autre entièrement mal classée (comme dans le scénario imaginaire d’un jeu
de données très déséquilibré, avec 95 % de points dans une classe et 5 % dans l’autre, et où
l’on prédit systématiquement la classe majoritaire), alors on aura Acc_equ = 0,5.

II.4.3. Taux de réussite équilibré en classification multi-classes

On considère une classification multi-classes avec K classes c1, c2, …, cK, un ensemble de test
{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛 et des prédictions 𝑦𝑖̂. Pour chaque classe, on note :

Ω𝑘 = {𝑖 ∈ {1, . . . , 𝑛} ∶ 𝑦𝑖 = 𝑐𝑘}

… l’ensemble des indices des observations dont la vraie classe est 𝑐𝑘. Le taux de réussite
« par classe » est :

𝐴𝑐𝑐𝑘 =
1

|Ω𝑘|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω𝑘

Le taux de réussite équilibré est alors la moyenne de ces taux de réussite par classe :

𝐴𝑐𝑐_𝑒𝑞𝑢 =
1

𝐾
∑𝐴𝑐𝑐𝑘

𝐾

𝑘=1

II.4.4. Matrice de confusion en classification binaire

D’autres métriques permettant d’évaluer la qualité d’un modèle entraîné pour une
classification binaire peuvent être construites à partir de la matrice de confusion. Une
matrice de confusion est un tableau récapitulatif dans lequel les résultats de classification
sont ventilés selon la classe réelle (lignes) et la classe prédite (colonnes).

On note ici A le nombre de points dont le label réel 1 coïncide avec le label attribué par le
classifieur entraîné. L’autre entrée diagonale D est définie de manière analogue : c’est le
nombre de points dont le label prédit 0 est égal au label réel. Les entrées hors diagonale,
notées B et C, représentent les deux types d’erreurs de classification, lorsque le label réel et

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

20

le label prédit ne coïncident pas. En pratique, on souhaite que ces deux valeurs soient aussi
petites que possible :

Figure 13: Matrice de confusion

Le taux de réussite peut s’exprimer en fonction des quantités de la matrice de confusion
représentées sur la Figure 13, sous la forme :

𝐴𝑐𝑐 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷

… et, de même, le taux de réussite calculé séparément sur chacune des deux classes s’écrit :

𝐴𝑐𝑐1(𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é) =
𝐴

A + B
 𝐴𝑐𝑐0(𝑠𝑝é𝑐𝑖𝑓𝑖𝑐𝑖𝑡é) =

𝐷

C + D

Dans le jargon de l’apprentissage automatique, ces métriques calculées séparément sur
chaque classe sont souvent appelées, respectivement, la sensibilité (taux de vrais positifs –
Acc1) et la spécificité (taux de vrais négatifs – Acc0). Le taux de réussite équilibré peut, de
même, s’exprimer comme :

𝐴𝑐𝑐_𝑒𝑞𝑢 =
1

2

𝐴

𝐴 + 𝐵
+
1

2

𝐷

𝐶 + 𝐷
 (𝑚𝑜𝑦𝑒𝑛𝑛𝑒 𝑑𝑒 𝑙𝑎 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é 𝑒𝑡 𝑑𝑒 𝑙𝑎 𝑆𝑝é𝑐𝑖𝑓𝑖𝑐𝑖𝑡é)

On peut également définir la précision, qui est la proportion de vrais positifs parmi ceux qui
sont déclarés comme positifs :

𝑝𝑟é𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴

𝐴 + 𝐶

Le F1-score est alors défini comme la moyenne harmonique de la précision et de la
sensibilité :

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é

=
2𝐴

2𝐴 + 𝐵 + 𝐶

Le F1-score n’est élevé que si la précision et la sensibilité sont toutes les deux élevées ; il
pénalise fortement un déséquilibre (par exemple précision très bonne mais sensibilité faible,
ou l’inverse).

Dans l’exemple de la figure 14, une classification binaire
sur un jeu de données classique de détection de spam est
réalisée. Ce jeu de données contient P = 4601 exemples :
1813 e-mails « spam » et 2788 e-mails « non-spam ».

Le taux de réussite est de
2664+1622

4601
= 93,2%. Le

taux de bonne classification « non-spam » est de
2664

2664+124
= 95,6% et le taux de bonne classification « spam » est de

1622

191+1622
= 89,5%. Le

taux de réussite équilibré est donc la moyenne de ces deux taux et vaut 92,5%.

Figure 14 : Matrice de confusion binaire

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

21

II.4.5. Matrice de confusion en classification multi-classes

Dans le cas de la classification, une fois l'algorithme appliqué aux données, on peut
représenter la matrice de confusion multi-classes associée aux jeux de données
d'entraînement et de test pour évaluer le modèle.

C'est un élément M de ℳ𝑐(ℕ) ainsi défini : pour tout (𝑖, 𝑗) ∈ ⟦0, 𝑐 − 1⟧2, 𝑚𝑖𝑗 est le nombre

de données de test qui ont réellement i pour étiquette et auxquelles l'algorithme
d'apprentissage statistique entraîné sur les données d'entraînement a attribué l'étiquette j.

Plus la matrice de confusion est proche d'une matrice diagonale, meilleure est la qualité de
la prédiction de l'algorithme.

def matrice_confusion(y_true, y_pred, labels=None):
 """
 Renvoie la matrice de confusion M telle que
 M[i, j] = nombre d'exemples dont la vraie classe est labels[i]
 et la classe prédite est labels[j].
 """
 y_true = np.asarray(y_true)
 y_pred = np.asarray(y_pred)

 if labels is None:
 labels = np.unique(np.concatenate([y_true, y_pred]))
 else:
 labels = np.asarray(labels)

 dico = {labels[j]: j for j in range(len(labels))}
 mat = np.zeros((len(labels), len(labels)), dtype=int)

 for i in range(len(y_true)):
 mat[dico[y_true[i]], dico[y_pred[i]]] += 1
 return mat, labels

Exemple :

y_true = ["chat","chien","chien","chat","lapin"]
y_pred = ["chat","chat","chien","chat","lapin"]
M, labels = matrice_confusion(y_true, y_pred)
print(labels)
print(M)

 ['chat' 'chien' 'lapin']
 [[2 0 0]
 [1 1 0]
 [0 0 1]]
 0.8 # Taux de réussite

Le quotient
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗
 donne le taux de réussite à partir de la matrice de confusion M : c'est la

proportion de données dont les étiquettes ont été correctement prédites.

def TAUX_REUSSITE (M):
 return np.trace(M)/np.sum(M)

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

22

Voici un autre exemple avec un jeu de données de 1000 valeurs, où la matrice de confusion
obtenue est la suivante :

Le taux de réussite est de :

𝐴𝑐𝑐 =
𝑡𝑟(𝑀)

‖𝑀‖1
=
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗
=
363 + 354 + 118

1000

= 0,835 (83,5%)

II.5. Jeu de données pour les tests

En général, ce qui nous intéresse, c’est la
précision des prédictions obtenues lorsque l’on applique le modèle à des données de test,
c’est-à-dire à des données nouvelles, jamais vues pendant l’apprentissage.

En effet, supposons que l’on veuille développer un algorithme pour prédire le prix d’une
action à partir de ses rendements passés. On peut entraîner la méthode à l’aide des
rendements des six derniers mois. Mais on ne cherche pas vraiment à savoir si la méthode
prédit correctement le prix de la semaine dernière ; on veut plutôt qu’elle prédise
correctement le prix de demain ou du mois prochain.

De même, supposons que l’on dispose, pour un certain nombre de patients, de mesures
cliniques (par exemple poids, pression artérielle, taille, âge, antécédents familiaux), ainsi que
d’une information indiquant si chaque patient est diabétique. On peut utiliser ces patients
pour entraîner une méthode d’apprentissage statistique afin de prédire le risque de diabète
à partir de ces mesures. En pratique, on veut que la méthode prévoie correctement le risque
de diabète pour de futurs patients, à partir de leurs mesures cliniques. On s’intéresse moins
à la précision sur les patients ayant servi à l’apprentissage, puisque l’on connaît déjà leur
état.

Ce qui nous intéresse vraiment n’est donc pas de savoir si 𝑓(𝑥𝑖) ≈ 𝑦𝑖 ; nous voulons plutôt

savoir si 𝑓(𝑥0) ≈ 𝑦0 , où (x0, y0) est une observation de test, nouvelle, qui n’a pas été
utilisée pour entraîner la méthode d’apprentissage statistique. Si nous disposions d’un grand
nombre d’observations de test, nous pourrions calculer :

1

𝑛
∑(𝑦𝑖0 − 𝑓(𝑥𝑖0))

2
𝑛

𝑖=1

… soit l’erreur quadratique moyenne de prédiction sur ces observations de test (xi0, yi0).

Pour tester le modèle et avoir une idée du taux de bons résultats qu'il renvoie, on effectue
alors une partition des données en un jeu d'entraînement et un jeu de test. Le jeu
d'entraînement représente généralement 70% à 90% des données.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – NOTIONS GÉNÉRALES

23

II.6. Normalisation des données

Quand les données font intervenir des attributs d'ordres de grandeur très différents, il peut
être utile d'effectuer une normalisation affine des données avant de leur appliquer un
algorithme d'intelligence artificielle.

La normalisation affine des données consiste à appliquer, pour chaque caractéristique Xi,
une transformation du type 𝑋′𝑖 = 𝑎𝑖𝑋𝑖 + 𝑏𝑖 afin de rendre les variables comparables en
échelle. Une forme très utilisée est la normalisation min–max, qui envoie chaque
caractéristique dans [0,1] :

𝑥′𝑖 =
𝑥𝑖 −𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)

C’est particulièrement important pour les méthodes fondées sur des distances (k-NN, k-
moyennes) : si une caractéristique a une échelle beaucoup plus grande qu’une autre, elle
domine artificiellement la distance euclidienne, et donc la décision (voisinage) ou la
formation des clusters. La normalisation remet les variables sur une échelle comparable, ce
qui rend l’usage de la distance plus pertinent.

La Figure 15 illustre l’effet de la normalisation des données sur la caractéristique 1,
initialement dans [10, 90] et envoyé dans [0,1] après normalisation :

Figure 15 : Normalisation min-max des données

Pour cela on peut utiliser l’algorithme qui suit et définir un nouveau tableau normalisé :

def NORMALISATION_AFFINE(x):
 m,M = min(x),max(x)
 return (x-m)/(M-m)

