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I) INTRODUCTION, NOTIONS GÉNÉRALES 
L’intelligence artificielle (IA) recouvre un ensemble très large de problématiques et de 
techniques, dont les contours varient selon que l’on insiste sur les objectifs (imiter, 
reproduire, assister, comprendre) ou sur les méthodes mises en œuvre. Historiquement, l’IA 
s’est structurée autour de questions fondatrices (dans un article de Turing publié en 1950, 
puis dans un colloque organisé au Dartmouth College en 1956), et s’est progressivement 
outillée pour traiter des tâches de décision, de perception ou d’analyse. 
 
L'apprentissage peut être défini comme l'acquisition de connaissances et de compétences 
par la pratique et l'expérience. Dans le cas d'un ordinateur, les compétences peuvent être 
matérialisées par des algorithmes et la pratique correspond à l'utilisation des données 
fournies à la machine. 
 
On distingue trois ensembles inclus les uns dans les 
autres : l'intelligence artificielle, très générale, qui inclut 
l'apprentissage statistique (apprentissage automatique, 
machine learning), qui lui-même inclut l'apprentissage 
profond (deep learning). 

 
L'intelligence artificielle trouve des applications dans tout type de domaines : traduction 
automatique de textes, pilotage de véhicules autonomes, de robots, reconnaissance et 
assistance vocales, génération d'images, reconnaissance de formes, de visages, imagerie, 
jeux de stratégie, etc. 
 
L'apprentissage statistique intervient dans des systèmes de repérage de comportements 
d'une clientèle dans un but de publicité ciblée, dans la programmation de stratégies 
automatisées en finance de marché, dans l'assistance au diagnostic médical... 
 
Dans ce chapitre, on se place dans le cadre de l’apprentissage statistique. En apprentissage 
statistique, le principe est d'utiliser un grand nombre de données pour que l'algorithme 
apprenne une méthode qu'il saura utiliser sur des données nouvelles : alors qu'un 
algorithme classique retourne un résultat à partir des données d'entrée, un algorithme 
d'apprentissage retourne un algorithme classique qui sera appliqué à des données nouvelles. 
L’enjeu n’est donc pas seulement de bien « répondre » sur les exemples déjà vus, mais de 
généraliser à des entrées inédites, ce qui distingue un apprentissage utile d’une simple 
mémorisation. 
 
D’un point de vue algorithmique, cette démarche s’inscrit dans un pipeline assez standard. 
On collecte ou constitue un jeu de données, on choisit une représentation adaptée des 
objets étudiés (les « caractéristiques » ou features), on entraîne une méthode sur une partie 
des données, puis on valide la qualité des résultats sur des données distinctes. Cette 
structuration a une conséquence pratique importante : la nature et la diversité des données 
d’entraînement conditionnent fortement la capacité de généralisation, et une base trop 
petite ou peu représentative conduit souvent à des décisions peu fiables dès que l’on sort 
des cas déjà rencontrés. 
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I.1. Données et représentation vectorielle 

Supposons que nous voulions étudier l’association entre la publicité et les ventes d’un 
produit particulier. Le jeu de données Advertising contient les ventes de ce produit dans 
200 marchés différents, ainsi que les budgets publicitaires du produit dans chacun de ces 
marchés pour trois médias distincts : la télévision, la radio et la presse écrite. Les données 
sont présentées à la Figure 1. Si nous déterminons qu’il existe une association entre la 
publicité et les ventes, nous pourrons recommander au client d’ajuster les budgets 
publicitaires, augmentant ainsi indirectement les ventes. Autrement dit, notre objectif est de 
développer un modèle précis pouvant être utilisé pour prédire les ventes à partir des 
budgets alloués aux trois médias. 

 
Figure 1 : Ventes en fonction des budgets TV, radio et presse écrite, en milliers de dollars 

Dans ce contexte, les budgets publicitaires sont des variables d’entrée, tandis que les ventes 
constituent une variable de sortie. Les variables d’entrée sont généralement notées à l’aide 
du symbole X, avec un indice pour les distinguer. Ainsi, X1 peut correspondre au budget TV, 
X2 au budget radio et X3 au budget presse écrite. Les variables d’entrée portent différents 
noms, comme prédicteurs, caractéristiques (features), variables indépendantes ou, parfois, 
simplement variables. La variable de sortie — ici, les ventes — est souvent appelée la 
réponse, cible, label, étiquette ou variable dépendante, et est généralement notée Y. 
 
Ici, le jeu de données est un ensemble de couples {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, avec n = 200, où chaque 
𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, (𝑥𝑖)3)

𝑇 ∈ ℝ3 décrit les 3 caractéristiques (budget TV, budget radio et 
budget presse écrite) du vecteur des caractéristiques xi.  
 
On utilise généralement une majuscule pour désigner le vecteur des caractéristiques X et la 
variable de sortie Y « en général » : ce sont les entrées / sorties abstraites du problème 
(souvent vues comme des variables aléatoires ou, plus simplement, comme des variables 
génériques). Les minuscules désignent une valeur concrète observée de X ou de Y, c’est-à-
dire un exemple mesuré (une réalisation). 
Le choix de représenter une observation par un vecteur 𝑥 ∈ ℝ𝑝 n’est pas anodin : il permet 
de ramener des objets très différents (images, textes, mesures physiques, etc.) à un format 
commun manipulable par des algorithmes. Sans entrer ici dans l’ingénierie de 
caractéristiques, on retiendra l’idée suivante : une fois la représentation fixée, l’algorithme 
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travaille essentiellement dans un espace vectoriel, où des opérations de comparaison, de 
regroupement et de décision deviennent possibles. 
 
Imaginons par exemple que l’on souhaite mettre en place un algorithme d’apprentissage 
automatique afin d’apprendre à un ordinateur à distinguer des images de chats de celles 
contenant des chiens (Figure 2). Ce genre de tâche, où l’on cherche à apprendre à un 
ordinateur à distinguer différents types ou classes d’objets (ici, des chats et des chiens), est 
appelé, dans le jargon de l’apprentissage automatique, un problème de classification.  

 
Figure 2 : ensemble d’entraînement composé de six images de chats et de six images de chiens 

Pour faire la différence entre des images contenant des chats et celles contenant des chiens, 
nous (les humains) utilisons la couleur, la taille, la forme des oreilles ou du museau, et/ou 
une combinaison de ces caractéristiques pour distinguer les deux. Autrement dit, nous ne 
regardons pas une image comme une simple collection de nombreux petits pixels carrés. 
Nous en extrayons des détails plus grossiers, ou des caractéristiques, afin d’identifier ce que 
nous observons. Il en va de même pour les ordinateurs. Pour entraîner avec succès un 
ordinateur à réaliser cette tâche (et, plus généralement, toute tâche d’apprentissage 
automatique) nous devons lui fournir des caractéristiques correctement conçues. 
 
Concevoir des caractéristiques de qualité n’est généralement pas une tâche triviale, car elle 
peut fortement dépendre de l’application. Par exemple, une caractéristique comme la 
couleur serait moins utile pour discriminer des chats et des chiens (puisque de nombreux 
chats et chiens ont des couleurs de pelage similaires) qu’elle ne le serait pour distinguer des 
grizzlis et des ours polaires. De plus, extraire ces caractéristiques à partir d’un jeu de 
données d’entraînement peut également être difficile. Par exemple, si certaines de nos 
images d’entraînement étaient floues ou prises sous un angle qui ne permettait pas de voir 
correctement l’animal, les caractéristiques que nous avons conçues pourraient ne pas être 
correctement extraites. 
 
Pour notre exemple, on peut cependant imaginer extraire facilement deux caractéristiques 
de chaque image : la taille du museau relative à la taille de la tête, allant de petite à grande, 
et la forme des oreilles, allant de ronde à pointue. Avec ce choix de caractéristiques, chaque 
image peut désormais être représentée par seulement deux nombres : un nombre 
exprimant la taille relative du museau, et un autre capturant le caractère pointu ou rond des 
oreilles. Autrement dit, nous pouvons représenter chaque image de notre ensemble 
d’entraînement dans un espace bidimensionnel à l’aide de vecteurs de caractéristiques, où la 
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taille du museau et la forme des oreilles constituent respectivement les axes de 
coordonnées horizontal et vertical (Figure 3) : 

 
Figure 3 : Représentation dans l’espace des caractéristiques du jeu de données 

 

I.2. Qu’est-ce que l’apprentissage statistique 

Plus généralement, supposons que nous observions une réponse quantitative y et p 
caractéristiques différentes : x1, x2, …, xp. Nous supposons qu’il existe une relation entre Y et 
X = (X1, X2, …, Xp), relation qui peut s’écrire sous la forme très générale suivante : 

𝑌 = 𝑓(𝑋) + 𝜀 

Ici, f est une fonction fixe mais inconnue de X1, …, Xp, et ε est un terme d’erreur aléatoire, 
indépendant de X et de moyenne nulle. Dans cette formulation, f représente l’information 
systématique que X fournit à propos de Y. 
 
Comme autre exemple, considérons le panneau de gauche de la Figure 4, qui représente le 
revenu en fonction du nombre d’années d’études pour 30 individus du jeu de données 
Revenu. 
 

 
Figure 4 : Jeu de données Revenu 
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Le graphique suggère qu’il pourrait être possible de prédire le revenu à partir du nombre 
d’années d’études. Cependant, la fonction f qui relie la variable d’entrée à la variable de 
sortie est, en général, inconnue. Dans cette situation, il faut estimer f à partir des points 
observés. Étant donné que Revenu est un jeu de données simulé, f est connue et elle est 
représentée par la courbe bleue dans le panneau de droite de la Figure 4. Les segments 
verticaux représentent les termes d’erreur ε. Nous remarquons que certaines des 30 
observations se situent au-dessus de la courbe bleue et d’autres en dessous ; globalement, 
les erreurs ont une moyenne approximativement nulle. 
 
En général, la fonction de prédiction (ou prédicteur) f peut dépendre de plus d’une variable 
d’entrée. Dans la Figure 5, nous représentons le revenu en fonction du nombre d’années 
d’études et de l’ancienneté. Ici, f est une surface bidimensionnelle qui doit être estimée à 
partir des données observées. 
 

 
Figure 5 : Revenu en fonction du nombre d’années d’étude et de l’ancienneté 

En substance, l’apprentissage statistique désigne un ensemble d’approches visant à estimer  
f. Dans ce chapitre d’introduction, nous allons voir certains des principaux concepts 
théoriques qui interviennent dans l’estimation de f, ainsi que des outils permettant d’évaluer 
les estimations obtenues. 
 

I.3. Prédiction et interprétation 

Il existe deux raisons principales pour lesquelles nous pouvons souhaiter estimer f : la 
prédiction et l’interprétation (aussi appelée inférence). Dans certains contextes, l’enjeu 
principal est de prédire correctement la sortie pour de nouvelles entrées ; dans d’autres, on 
cherche aussi à comprendre quels facteurs expliquent la sortie, ce qui suppose un modèle 
plus interprétable. Les méthodes abordées dans ce cours sont surtout motivées par l’objectif 
prédictif. 
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I.3.1. Prédiction et erreur irréductible associée 

Dans de nombreuses situations, un ensemble d’entrées X est facilement disponible, mais la 
sortie Y ne peut pas être obtenue aisément. Dans ce contexte, puisque le terme d’erreur a 
une moyenne nulle, on peut prédire Y à l’aide de : 

𝑌̂ = 𝑓(𝑋) 

… où 𝑓 représente notre estimation de f (fonction de prédiction), et 𝑌̂ la prédiction 

correspondante de Y. Dans ce contexte, 𝑓 est souvent considéré comme une « boîte noire », 

au sens où l’on ne s’intéresse généralement pas à la forme exacte de 𝑓, pourvu qu’elle 
fournisse des prédictions précises de Y. 
 
À titre d’exemple, supposons que X1, …, Xp soient des caractéristiques d’un échantillon de 
sang d’un patient, facilement mesurables en laboratoire, et que Y soit une variable codant le 
risque, pour ce patient, de subir une réaction indésirable grave à un médicament particulier. 
Il est naturel de chercher à prédire Y à partir de X, car nous pouvons ainsi éviter 
d’administrer le médicament en question aux patients qui présentent un risque élevé de 
réaction indésirable, c’est-à-dire aux patients pour lesquels l’estimation de Y est élevée. 
 

La précision de 𝑌̂ en tant que prédiction de Y dépend de deux quantités, que nous 

appellerons l’erreur réductible et l’erreur irréductible. En général, 𝑓 ne sera pas une 
estimation parfaite de f, et cette imperfection introduira une certaine erreur. Cette erreur 

est dite réductible, car il est potentiellement possible d’améliorer la précision de 𝑓 en 
utilisant la technique d’apprentissage statistique la plus appropriée pour estimer f. 
Toutefois, même s’il était possible d’obtenir une estimation parfaite de f, de sorte que notre 

réponse estimée prenne la forme 𝑌̂ = 𝑓(𝑋), notre prédiction comporterait malgré tout une 
part d’erreur. En effet, Y dépend également de ε, qui, par définition, ne peut pas être prédit 
à partir de X. Par conséquent, la variabilité associée à ε affecte aussi la précision de nos 
prédictions. On parle alors d’erreur irréductible, car, quelle que soit la qualité avec laquelle 
nous estimons f, nous ne pouvons pas réduire l’erreur introduite par ε. 
 
La quantité ε peut contenir des variables non mesurées qui seraient utiles pour prédire Y : 
puisque nous ne les mesurons pas, f ne peut pas les utiliser pour la prédiction. La quantité ε 
peut aussi contenir une variabilité impossible à mesurer. Par exemple, le risque d’une 
réaction indésirable peut varier, pour un patient donné et un jour donné, en fonction de 
variations de fabrication du médicament lui-même ou de l’état général de bien-être du 
patient ce jour-là. 
 

Considérons une estimation donnée 𝑓 et un ensemble de prédicteurs X, ce qui conduit à la 

prédiction 𝑌̂ = 𝑓(𝑋). Supposons un instant que 𝑓 et X soient tous deux fixés, de sorte que la 
seule variabilité provienne de ε. On a alors l’erreur quadratique moyenne de prédiction : 

𝔼 [(𝑌 − 𝑌̂)
2
] = 𝔼 [(𝑓(𝑋) + 𝜀 − 𝑓(𝑋))

2

] = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

+ 2(𝑓(𝑋) − 𝑓(𝑋)) 𝜀 + 𝜀2] 

                                                    = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

]
⏟            

𝑅é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

+ 𝑉𝑎𝑟(𝜀)⏟    
𝐼𝑟𝑟é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

 

L’erreur irréductible fournit toujours une limite supérieure à la précision de notre prédiction 
de Y. Cette limite est presque toujours inconnue en pratique. 
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I.3.2. Interprétation 

Souvent, on cherche à comprendre l’association entre Y et les caractéristiques X1, …, Xp. 
Dans ce cas, nous cherchons à estimer f, mais notre objectif n’est pas nécessairement de 

prédire Y. Dès lors, 𝑓 ne peut pas être considérée comme une « boîte noire », car nous 
devons en connaître la forme exacte. 
 
Par exemple, considérons les données Advertising illustrées à la Figure 1. On peut 
chercher à répondre à des questions telles que : 

- Quels médias sont associés aux ventes ? 
- Quels médias génèrent la plus forte augmentation des ventes ? 
- De quelle ampleur est l’augmentation des ventes associée à une augmentation 

donnée de la publicité à la télévision ? 
 
Cette situation relève du problème de l’interprétation. Un autre exemple consiste à 
modéliser la marque d’un produit qu’un client pourrait acheter à partir de variables telles 
que le prix, l’emplacement du magasin, les niveaux de remise, le prix des concurrents, etc. 
Dans ce contexte, on s’intéresse surtout à l’association entre chaque variable et la 
probabilité d’achat. Par exemple, dans quelle mesure le prix du produit est-il associé aux 
ventes ? Il s’agit d’un exemple de modélisation orientée vers l’interprétation. 
 
Selon que l’objectif final est la prédiction ou l’interprétation, ou même une combinaison des 
deux, différentes méthodes d’estimation de f peuvent être appropriées. Par exemple, les 
modèles linéaires permettent une interprétation relativement simple et interprétable, mais 
peuvent ne pas fournir des prédictions aussi précises que certaines autres approches. À 
l’inverse, certaines approches fortement non linéaires, peuvent potentiellement offrir des 
prédictions très précises de Y, mais au prix d’un modèle moins interprétable, pour lequel 
l’interprétation est plus difficile. 
 
Nous allons étudier dans ce cours deux méthodes, parmi lesquelles k-NN (k plus proches 
voisins). En régression ou classification, cette méthode correspond à une estimation non 
paramétrique et fortement non linéaire de f : on prédit Y à partir de la moyenne (ou 
majorité) des voisins proches. Cette méthode peut donner de très bonnes performances de 
prédiction si la structure est locale et si k et la métrique sont bien choisis, mais le « modèle » 
est peu interprétable, et l’interprétation est plus difficile. 
 

I.4. Comment est estimée la fonction de prédiction 

Il existe de nombreuses approches linéaires et non linéaires pour estimer la fonction de 
prédiction. Dans ce cours, nous allons étudier la méthode k-NN qui est une méthode non 
paramétrique. Vous voyez également l’utilisation de réseaux de neurones si vous suivez 
l’option SI, qui sont des modèles paramétriques. 
 
Ces méthodes partagent généralement certaines caractéristiques et nous allons ici établir un 
aperçu de ces caractéristiques communes. Nous supposerons toujours que nous avons 
observé un ensemble de n points de données distincts. Par exemple, dans la Figure 4, nous 
avons observé n = 30 points de données. Ces observations sont appelées des données 
d’apprentissage, car nous les utiliserons pour entraîner, ou « enseigner », à notre méthode 
comment estimer f. 
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Soit (𝑥𝑖)𝑗 la valeur du j-ième vecteur des caractéristiques (ou variable d’entrée) pour 

l’observation i, où i = 1, 2, …, n et j = 1, 2, …, p. De même, soit y𝑖   F la variable réponse pour 
la i-ième observation (F peut être un ensemble fini ou un espace vectoriel). Nos données 

d’apprentissage sont alors les couples {(x1, y1), … , (x𝑛, y𝑛)}, où 𝑥𝑖 = ((𝑥𝑖)1, . . . , (𝑥𝑖)𝑝)
𝑇

. 

 
Notre objectif est d’appliquer une méthode d’apprentissage statistique aux données 
d’apprentissage afin d’estimer la fonction inconnue f. Autrement dit, nous voulons trouver 

une fonction 𝑓 telle que 𝑌 ≈ 𝑓(𝑋) pour toute observation (X, Y). De manière générale, la 
plupart des méthodes d’apprentissage statistique visant cet objectif peuvent être classées 
comme paramétriques ou non paramétriques. 
 

I.4.1. Méthodes paramétriques 

Les méthodes paramétriques reposent sur une approche fondée sur la création d’un modèle 
en deux étapes. 
 

1. Tout d’abord, nous formulons une hypothèse concernant la « structure » de f. Par 
exemple, une hypothèse très simple consiste à supposer que f est linéaire en X (on 
suppose ici que 𝐹 = ℝ) : 

𝑓(𝑋) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝 

Une fois que l’on a supposé que f est linéaire, le problème d’estimation de f est 
grandement simplifié. Au lieu d’avoir à estimer une fonction p-dimensionnelle 
entièrement arbitraire f(X), il suffit d’estimer les p + 1 coefficients β0, β1, …, βp. 

 
2. Après avoir choisi un modèle, il nous faut une procédure qui utilise les données 

d’apprentissage pour ajuster (fit) ou entraîner le modèle. Dans le cas de l’ajustement 
du modèle linéaire précédent, nous devons estimer les paramètres β0, β1, …, βp. 
Autrement dit, nous voulons trouver des valeurs de ces paramètres telles que : 

𝑌 ≈ 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑝𝑋𝑝 

L’approche la plus courante pour ajuster le modèle est la méthode des moindres 
carrés. Elle consiste à choisir les paramètres du modèle en minimisant la somme des 
carrés des écarts entre les valeurs observées 𝑦𝑖 et les valeurs prédites par le modèle 
𝑦̂𝑖. Autrement dit, on ajuste la droite (ou l’hyperplan) qui rend ces erreurs 
globalement aussi petites que possible au sens quadratique. Une autre méthode, 
utilisée pour ajuster les paramètres des réseaux de neurones, est la méthode par 
descente du gradient. C’est une méthode d’optimisation itérative qui ajuste 
progressivement les paramètres d’un modèle pour diminuer une fonction de perte. 

 

Ces méthodes sont dites paramétriques, car elle ramènent l’estimation de f à l’estimation 
d’un nombre fini de paramètres. En supposant une forme paramétrique pour f, on simplifie 
le problème : il est en général plus facile d’estimer des paramètres que d’ajuster une 
fonction f totalement arbitraire. 
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La Figure 6 montre un exemple de l’approche paramétrique appliquée aux données Revenus 
de la Figure 5Figure 4. Le modèle linéaire est de la forme : 

𝑟𝑒𝑣𝑒𝑛𝑢 =  𝛽0 + 𝛽1 ∙ 𝑛𝑖𝑣𝑒𝑎𝑢_𝑒𝑡𝑢𝑑𝑒 + 𝛽2 ∙ 𝑎𝑛𝑐𝑖𝑒𝑛𝑛𝑒𝑡é 

Les observations sont représentées par les points rouges et le plan en jaune est l’hyperplan 
résultant de l’ajustement des paramètres du modèle : 

 
Figure 6 : Un modèle linéaire ajusté par la méthode des moindres carrés. 

En comparant la Figure 5 à la Figure 6, on voit que l’ajustement linéaire présenté dans la 
Figure 6 n’est pas tout à fait correct : la vraie fonction f présente une certaine courbure qui 
n’est pas reproduite par l’ajustement linéaire. Cependant, l’ajustement linéaire semble tout 
de même faire un travail raisonnable pour mettre en évidence la relation positive entre le 
nombre d’années d’études et le revenu, ainsi que la relation un peu moins positive entre 
l’ancienneté et le revenu. Il est possible qu’avec un nombre d’observations aussi réduit, ce 
soit le mieux que l’on puisse faire. 
 
L’inconvénient potentiel d’une approche paramétrique est que le modèle que nous 
choisissons ne correspond généralement pas à la forme réelle, inconnue, de f. Si le modèle 
retenu est trop éloigné de la vraie fonction f, alors notre estimation sera médiocre. On peut 
essayer de limiter ce problème en choisissant des modèles plus flexibles, capables d’ajuster 
de nombreuses formes fonctionnelles possibles de f (tels que les réseaux de neurones). 
Mais, en général, ajuster un modèle plus flexible impose d’estimer un plus grand nombre de 
paramètres. Ces modèles plus complexes peuvent alors conduire à un phénomène appelé 
surapprentissage (overfitting) : ils épousent trop fidèlement les erreurs, ou le bruit, présents 
dans les données. 
 

I.4.2. Méthodes non paramétriques 

Les méthodes non paramétriques ne font pas d’hypothèses explicites sur la forme 
fonctionnelle de f. À la place, elles cherchent une estimation de f qui se rapproche autant 
que possible des points de données. 
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Ces approches peuvent présenter un avantage majeur par rapport aux approches 
paramétriques : en évitant de supposer une forme particulière pour f, elles ont le potentiel 
d’ajuster avec précision une plus grande variété de formes possibles pour f. Toute approche 
paramétrique comporte le risque que la structure choisie pour estimer f soit très différente 
de la vraie f, auquel cas le modèle obtenu n’ajustera pas bien les données. À l’inverse, les 
approches non paramétriques évitent complètement ce danger, puisqu’elles ne font 
essentiellement aucune hypothèse sur la forme de f. 
 
Mais les approches non paramétriques souffrent aussi d’un inconvénient important : comme 
elles ne ramènent pas l’estimation de f à un petit nombre de paramètres, il faut un très 
grand nombre d’observations (bien plus que ce qui est généralement nécessaire avec une 
approche paramétrique) pour obtenir une estimation précise de f. 
 
Un exemple d’approche non paramétrique pour ajuster les données Revenus est présenté 
dans la Figure 7 (à gauche). Cette approche n’impose aucun modèle prédéfini à f et cherche 
plutôt à produire une estimation de f aussi proche que possible des données observées, tout 
en imposant que l’ajustement — c’est-à-dire la surface jaune de la Figure 7 — soit lisse : 

 
Figure 7 : Exemples de modèles non paramétriques utilisés pour estimer les données Revenus 

Dans ce cas, l’ajustement non paramétrique fournit une estimation remarquablement 
précise de la vraie fonction f présentée dans la Figure 5. 
 
Pour ajuster le modèle, on doit choisir un niveau de lissage. La Figure 7 montre à droite le 
même ajustement avec un niveau de lissage plus faible que celle de gauche, autorisant une 
courbe plus « rugueuse ». L’estimation obtenue ajuste alors parfaitement les données 
observées. Toutefois, la « surface » de la Figure 7 à droite est beaucoup plus variable que la 
vraie fonction f (Figure 5). C’est un exemple de surapprentissage (overfitting) des données, 
évoqué précédemment. 
 
Le surapprentissage est une situation indésirable, car l’ajustement obtenu ne fournira pas 
des estimations fiables de la réponse sur de nouvelles observations qui ne faisaient pas 
partie du jeu de données d’entraînement initial. 
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I.5. Apprentissage supervisé et non-supervisé 

On distingue classiquement deux cadres majeurs, qui structurent l’ensemble de ce cours : 
l’apprentissage supervisé et l’apprentissage non supervisé. 
 

I.5.1. Apprentissage supervisé 

En apprentissage supervisé, chaque observation xi est accompagnée d’une information-cible 
yi (un label, une classe, une valeur numérique). Nous cherchons à ajuster un modèle reliant 
la réponse aux vecteurs des caractéristiques, soit dans le but de prédire le plus précisément 
possible la réponse pour de nouvelles observations (prédiction), soit pour mieux 
comprendre la relation entre la réponse et les prédicteurs (inférence/interprétation). 
 
Ainsi, un jeu de données supervisé est un ensemble fini de couples {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, où chaque  

𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, . . , (𝑥𝑖)𝑝) ∈ ℝ
𝑝 décrit p caractéristiques et 𝑦𝑖 ∈ 𝐹 décrit la réponse 

associée (F peut être un ensemble fini ou un espace vectoriel). Les exemples que nous avons 
évoqués jusqu’ici relèvent tous de l’apprentissage supervisé. 
 
Nous aborderons dans ce cours l’apprentissage supervisé à travers la méthode k-NN. 
 

I.5.2. Apprentissage non supervisé 

L’apprentissage non supervisé correspond à une situation un peu plus délicate : pour chaque 
observation i = 1, …, n, on observe un vecteur de mesures xi, mais aucune réponse associée 
yi. Il n’est donc pas possible d’ajuster un modèle de régression linéaire, puisqu’il n’y a pas de 
variable réponse à prédire. Dans ce cadre, on travaille en quelque sorte « à l’aveugle » : on 
parle d’apprentissage non supervisé parce qu’il manque une variable réponse qui pourrait 
guider (superviser) l’analyse. 
 
Ce qu’on cherche à comprendre ici, ce sont les relations entre les variables, ou bien entre les 
observations elles-mêmes. Un outil classique dans ce contexte est l’analyse de clusters 
(clustering). L’objectif du clustering est de déterminer, à partir de x1, …, xn, si les 
observations se répartissent en groupes relativement distincts. Par exemple, dans une étude 
de segmentation de marché, on peut mesurer plusieurs caractéristiques (variables) de 
clients potentiels, telles que le code postal, le revenu du foyer et les habitudes d’achat. On 
peut penser que ces clients se répartissent en groupes, par exemple de « gros » et de 
« petits » acheteurs. Si l’information sur les dépenses de chaque client était disponible, une 
analyse supervisée serait possible. Mais cette information ne l’est pas : on ne sait pas, pour 
chaque client, s’il appartient au groupe des gros acheteurs. Dans ce cas, on peut tenter de 
regrouper les clients à partir des variables mesurées afin d’identifier des groupes distincts. 
Mettre en évidence de tels groupes peut être intéressant, car ils peuvent différer selon une 
propriété d’intérêt, comme les habitudes de dépense. 
 
La Figure 8 fournit une illustration simple du problème de clustering. On y a représenté 150 
observations mesurées selon deux variables, X1 et X2. Chaque observation appartient à l’un 
des trois groupes distincts. À titre illustratif, les membres de chaque groupe ont été tracés 
avec des couleurs et des symboles différents. Cependant, en pratique, l’appartenance à un 
groupe est inconnue, et l’objectif est de déterminer à quel groupe appartient chaque 
observation. 
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Dans le panneau de gauche de la Figure 8, c’est une tâche relativement facile, car les 
groupes sont bien séparés. À l’inverse, le panneau de droite illustre une situation plus 
difficile, dans laquelle il existe un certain recouvrement entre les groupes. On ne peut alors 
pas attendre d’une méthode de clustering qu’elle affecte tous les points situés dans la zone 
de recouvrement à leur « bon » groupe (bleu, vert ou orange). 
 

 
Figure 8 : Deux exemples de jeux de données de clustering comportant trois groupes 

Dans les exemples présentés à la Figure 8, il n’y a que deux variables. On peut donc 
simplement examiner visuellement les nuages de points pour repérer des clusters. 
Cependant, en pratique, on rencontre souvent des jeux de données comportant bien plus 
que deux variables. Dans ce cas, il n’est pas facile de représenter les observations 
graphiquement. 
 
Par exemple, si le jeu de données comporte p variables, on peut tracer p(p−1)/2 nuages de 
points distincts, et une inspection visuelle n’est tout simplement pas une méthode viable 
pour identifier des clusters. C’est pourquoi des méthodes de clustering automatisées sont 
importantes. Nous abordons dans ce cours l’apprentissage non supervisé et le clustering 
avec l’algorithme des k-moyennes (k-means).  
 

I.6. Régression et classification 

Les variables peuvent être de nature quantitative ou qualitative (aussi appelées 
catégorielles). Les variables quantitatives prennent des valeurs numériques. Par exemple : 
l’âge, la taille ou le revenu d’une personne, la valeur d’une maison, ou le prix d’une action. 
 
À l’inverse, les variables qualitatives prennent leurs valeurs dans l’une des K classes (ou 
catégories) possibles. Par exemple : l’état matrimonial d’une personne (marié ou non), la 
marque d’un produit acheté (marque A, B ou C), le fait de faire défaut sur une dette (oui ou 
non), ou encore un diagnostic médical (rhume, grippe ou autre infection respiratoire). 
 
On appelle généralement problèmes de régression ceux dont la réponse est quantitative, et 
problèmes de classification ceux dont la réponse est qualitative.  Certaines méthodes 
statistiques, comme les K plus proches voisins que nous allons étudier dans ce cours, 
peuvent être utilisées aussi bien lorsque la réponse est quantitative que lorsqu’elle est 
qualitative. 
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Plus formellement, considérons un jeu de données supervisé constitué de couples 

{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛, où chaque  𝑥𝑖 = ((𝑥𝑖)1, (𝑥𝑖)2, . . , (𝑥𝑖)𝑝) ∈ ℝ
𝑝 décrit p caractéristiques et 𝑦𝑖 ∈

𝐹 décrit la réponse associée. Deux types de problèmes se posent : 
 

- Si F est un ensemble fini, on parle de problème de classification. Dans ce cas, on peut 
supposer que F est de la forme 𝐹 = {0, 1, . . ., 𝑐 − 1}, où c est le nombre de classes 
souhaitées. Dans le cas particulier où c = 2, on a F = {0, 1}, et l'on parle de 
classification binaire. La reconnaissance optique de caractères (ROC) (optical 
character recognition, OCR), la reconnaissance de fleurs sont des problèmes de 
classification. Le filtrage des spams est quant à lui un problème de classification 
binaire. 

- Si F est un espace vectoriel, on parle de problème de régression. La prédiction des 
recettes d'un film, de l'âge d'un internaute ou du nombre de clics sur un lien de site 
internet sont des problèmes de régression. 

 

II) PERFORMANCES D’UN MODÈLE 
Pour évaluer la performance d’un modèle sur un jeu de données, il faut disposer d’un moyen 
de mesurer à quel point ses prédictions correspondent réellement aux données observées. 
Autrement dit, il faut quantifier dans quelle mesure la réponse prédite pour une observation 
est proche de la réponse vraie associée à cette observation. 
 

II.1. Fonction de perte et risque empirique 

Pour savoir si un modèle est concluant, on définit une fonction de perte ℓ: 𝐹 × 𝐹 → ℝ+. 
 
Pour un problème de classification, on peut poser : 

ℓ(𝑦, 𝑦̂𝑖) = 𝕀(𝑦 ≠ 𝑦̂𝑖)  =  1 − 𝛿𝑦,𝑦̂𝑖             , 𝑦̂𝑖 = 𝑓(𝑥𝑖) 

Pour un problème de régression : 

ℓ(𝑦, 𝑦̂𝑖) = ‖𝑦 − 𝑦̂𝑖‖
2 

Le prédicteur f doit alors minimiser le risque théorique : 

𝑅(𝑓) = 𝐸(ℓ(𝑦, 𝑦̂𝑖)) 

… l’espérance étant prise selon la loi (inconnue) du couple (x, y). 
 
Comme cette loi est inconnue, sous l’hypothèse que les données sont des tirages 
indépendants et identiquement distribués (i.i.d.) et que la perte admet une moyenne finie, la 
moyenne empirique de la perte est une bonne approximation de son espérance quand n est 
grand. On l’approche donc par le risque empirique (moyenne sur un échantillon de n 
données) : 

𝑅̂𝑛(𝑓) =
1

𝑛
∑ℓ(𝑦𝑖, 𝑦̂𝑖)

𝑛

𝑖=1

 

L’apprentissage par minimisation du risque empirique consiste alors à choisir 𝑓 parmi une 

famille de fonctions ℱ (une « classe de modèles ») de manière à rendre 𝑅̂𝑛(𝑓) aussi petit 

que possible. 
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II.2. Phénomène de sur-apprentissage 

La fonction 𝑓 n’est pas fixée à l’avance : elle est choisie dans une famille de fonctions ℱ en 
regardant les données au fur et à mesure de l’apprentissage. Or, plus la classe ℱ est riche 
(beaucoup de formes possibles), plus il devient facile de trouver une fonction qui « colle » 
très bien aux données d’apprentissage, y compris aux erreurs de mesure et au bruit. C’est ce 
qu’on appelle le sur-apprentissage (overfitting) : la règle apprend des détails accidentels du 
jeu d’apprentissage au lieu d’apprendre la tendance générale. 

En conséquence : 

- Si ℱ est très flexible, on peut obtenir un risque empirique très petit (erreur 
d’entraînement faible), mais la performance sur des nouvelles données peut être 
mauvaise (erreur de test élevée), car le modèle a « mémorisé » du bruit. 

- Si ℱ est trop rigide, la règle ne peut pas s’adapter : elle commet une erreur 
d’entraînement déjà élevée et généralise mal aussi (sous-ajustement). 

Pour illustrer ce phénomène, utilisons un jeu de données construit à partir d’une sinusoïdale 
parfaite et ajoutons-y aléatoirement du bruit à la sortie (ici sur P = 21 points) : 

 

Figure 9 : Sinusoïde originale (gauche) et jeu de données bruité (droite) 

La Figure 10 illustre l’ajustement non linéaire entièrement optimisé de deux modèles 
appliqués à ces données, utilisant respectivement un modèle polynomial (ligne du haut) et 
un réseau de neurones (ligne du bas). 

 

Figure 10 : Ajustement des différents modèles 

On remarque que les deux modèles sous-ajustent les données lorsqu’on n’utilise qu’un seul 
paramètre B = 1 (colonne de gauche). Ce sous-ajustement est une conséquence directe de 
l’utilisation de modèles de faible flexibilité, qui produisent des ajustements trop simples 
pour représenter correctement la structure sous-jacente des données qu’ils cherchent à 
approximer. 
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On constate aussi que chaque modèle s’améliore lorsque l’on augmente B, mais seulement 
jusqu’à un certain point : au-delà, chaque modèle ajusté devient trop complexe, commence 
à paraître excessivement irrégulier, et ressemble peu au phénomène sinusoïdal qui a 
initialement généré les données. 
 
De tels modèles sur-ajustés, bien qu’ils représentent très bien les données actuelles, seront 
de mauvais prédicteurs pour de nouvelles données générées par le même processus. 
 

II.3. Performances d’un modèle en régression 

Dans le cadre de la régression, la mesure la plus couramment utilisée est l’erreur 
quadratique moyenne (MSE, mean squared error), qui utilise le carré de la norme 
euclidienne comme fonction de perte et définie par : 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Le MSE est faible lorsque les réponses prédites sont très proches des réponses vraies, et il 
est élevé lorsque, pour certaines observations, les réponses prédites et les réponses vraies 
diffèrent fortement. 
 
Après avoir défini la MSE, on introduit souvent la RMSE (Root Mean Squared Error), définie 
comme la racine carrée de la MSE. L’intérêt principal de cette transformation est d’obtenir 
une mesure d’erreur dans la même unité que la variable réponse Y : alors que la MSE 
s’exprime en « unités au carré », la RMSE se lit directement comme une erreur typique (par 
exemple en euros, en mètres, etc.), ce qui facilite l’interprétation et la comparaison de 
modèles sur une même tâche. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑛

𝑖=1

 

Un inconvénient de l’utilisation de l’erreur quadratique (que l’on minimise pour obtenir les 
paramètres optimaux d’un modèle paramétrique) est que le fait de mettre l’erreur au carré 
augmente l’importance des grandes erreurs. En particulier, pour des erreurs de norme 
supérieure à 1, la mise au carré amplifie fortement ces valeurs. Cela oblige les coefficients 
appris à produire un ajustement qui cherche surtout à réduire ces grandes erreurs, parfois 
dues à des valeurs aberrantes (outliers) dans le jeu de données. Cela tend à produire des 
modèles qui sur-ajustent (overfit) les valeurs aberrantes. 
 
Notons que la RMSE ne rend pas la mesure plus robuste aux valeurs aberrantes : comme elle 
repose toujours sur des écarts au carré, les grandes erreurs restent fortement pénalisées. 
Minimiser la RMSE ou la MSE revient au même, car la racine carrée est une fonction 
croissante. 
 
La Figure 11 illustre ce phénomène : le jeu de données peut dans l’ensemble être 
correctement décrit par un modèle linéaire, à l’exception d’une seule valeur aberrante. Les 
paramètres d’un modèle linéaire sont ajustés en utilisant l’erreur MSE. L’ajustement ainsi 
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obtenu ne représente pas bien la majorité des points : il se courbe nettement vers le haut 
dans le but de réduire la grande erreur quadratique associée au point aberrant isolé. 

 
Figure 11 : Ajustement d'un modèle linéaire sur le jeu de données avec une valeur aberrante 

Pour minimiser l’impact des valeurs aberrantes, une alternative consiste alors à remplacer 
l’erreur quadratique par une erreur absolue. La moyenne de ces écarts absolus sur un 
ensemble de données définit la déviation absolue moyenne (MAD – Mean Absolute 
Deviation) ou encore l’erreur absolue relative moyenne (MARE – Mean Absolute Relative 
Error) : 

𝑀𝐴𝐷 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                 𝑀𝐴𝑅𝐸 =
1

𝑛
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑛

𝑖=1

 

La Figure 12 présente le résultat de l’ajustement d’un modèle linéaire en minimisant, d’une 
part, le critère des moindres carrés et, d’autre part, le critère des écarts absolus, en utilisant 
le jeu de données de la Figure 11. Le critère des moindres carrés est tracé en pointillés, et le 
critère des écarts absolus en trait plein. En examinant ces courbes, on constate que 
l’ajustement en utilisant les écarts absolus est moins influencé par la valeur aberrante et suit 
mieux la majorité des points. Cela constitue, à lui seul, un indice que le premier conduit à un 
ajustement sensiblement meilleur que les moindres carrés. 

 

Figure 12 : Impact des deux mesures sur l’ajustement des paramètres du modèle 
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La MAD est surtout meilleure pour gérer les valeurs aberrantes et la MSE reste très utilisée 
pour plusieurs raisons : 

- Ses propriétés mathématiques font qu’elle est plus simple à optimiser que la MAD et 
conduit à des calculs rapides ; 

- Minimiser la MSE correspond à un choix naturel si l’on suppose des erreurs 
« gaussiennes » (bruit à peu près normal) ; 

- Pénaliser les grandes erreurs n’est pas toujours souhaitable car si les grosses erreurs 
coûtent très cher (sécurité, contrôle, finance), on préfère parfois un critère qui 
« punit » davantage les écarts importants ; 

- Dans beaucoup de modèles (réseaux de neurones notamment), la perte quadratique 
est compatible avec des méthodes d’optimisation simples et stables. La perte 
absolue peut fonctionner, mais elle peut rendre l’entraînement moins stable ou plus 
lent selon les cas. 

 

II.4. Performances d’un modèle en classification 

II.4.1. Taux de réussite 

Dans le cas d'un problème de classification, on effectue en général une stratification des 
données : c'est une partition particulière dans laquelle la proportion de données dans 
chaque classe est la même que dans l'échantillon initial. 
 

L’approche la plus courante pour quantifier la précision de la fonction de prédiction 𝑓 est 
alors de mesurer son taux de réussite (accuracy), notée Acc. Il s’agit du pourcentage 
d’exemples du jeu de données d’apprentissage dont le label est correctement prédit par le 
modèle, c’est-à-dire : 

𝐴𝑐𝑐 =  
1

𝑛
∑𝛿𝑦𝑖,𝑦̂𝑖

𝑛

𝑖=1

 

Le taux de réussite varie de 0 (aucun point n’est correctement classé) à 1 (tous les points 
sont correctement classés). 

 

II.4.2. Taux de réussite équilibré en classification binaire 

Le taux de réussite est une mesure de base très pertinente pour évaluer la performance d’un 
classifieur entraîné. Cependant, dans certains scénarios, elle peut donner une image 
incomplète de la qualité réelle de la résolution du problème de classification. 
 
Par exemple, lorsque les classes d’un jeu de données sont fortement déséquilibrées — c’est-
à-dire lorsqu’une classe contient beaucoup plus d’exemples que l’autre — le taux de réussite 
perd une grande partie de sa valeur comme métrique de qualité. En effet, si une classe 
domine largement, un taux de réussite proche de 1 peut être trompeur. Supposons par 
exemple qu’une classe représente 95 % des données : un classifieur naïf qui attribue 
systématiquement l’étiquette de la classe majoritaire à tous les points obtient un taux de 
réussite de 95 %. Pourtant, dans ce cas, « se tromper sur 5 % » revient à mal classer 
entièrement l’autre classe. Une manière simple d’améliorer la métrique du taux de réussite 
est de calculer le taux de réussite (taux de bonne classification) sur chaque classe 
séparément, puis de faire la moyenne. 
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Considérons le cas d’une classification binaire où F = {0, 1}. Si l’on note Ω0 l’ensemble des 
indices des points dont le label vaut yi = 0, et Ω1 l’ensemble des indices des points dont le 
label vaut yi = 1, on peut alors calculer, séparément pour chaque classe, son taux de 
réussite : 

𝐴𝑐𝑐0 =
1

|Ω0|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω0

                             𝐴𝑐𝑐1 =
1

|Ω1|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω1

 

… où |Ω0| et |Ω1| désignent respectivement le nombre de points appartenant aux classes 0 
et 1. On peut ensuite regrouper ces deux mesures en une seule valeur en prenant la 
moyenne. Cette métrique combinée s’appelle le taux de réussite équilibré : 

𝐴𝑐𝑐_𝑒𝑞𝑢 =
𝐴𝑐𝑐0 + 𝐴𝑐𝑐1

2
 

Le taux de réussite équilibré varie entre 0 et 1. Lorsqu’elle vaut 0, aucun point n’est 
correctement classé ; lorsque les deux classes sont classées parfaitement, on a Acc_equ = 1. 
Les valeurs intermédiaires entre 0 et 1 mesurent à quel point, en moyenne, chacune des 
deux classes est bien classée prise séparément. Par exemple, si une classe est entièrement 
bien classée et l’autre entièrement mal classée (comme dans le scénario imaginaire d’un jeu 
de données très déséquilibré, avec 95 % de points dans une classe et 5 % dans l’autre, et où 
l’on prédit systématiquement la classe majoritaire), alors on aura Acc_equ = 0,5. 
 

II.4.3. Taux de réussite équilibré en classification multi-classes 

On considère une classification multi-classes avec K classes c1, c2, …, cK, un ensemble de test 
{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛 et des prédictions 𝑦𝑖̂. Pour chaque classe, on note : 

Ω𝑘 = {𝑖 ∈ {1, . . . , 𝑛} ∶ 𝑦𝑖 = 𝑐𝑘} 

… l’ensemble des indices des observations dont la vraie classe est 𝑐𝑘. Le taux de réussite 
« par classe » est : 

𝐴𝑐𝑐𝑘 =
1

|Ω𝑘|
∑ 𝛿𝑦𝑖,𝑦̂𝑖
𝑖∈Ω𝑘

 

Le taux de réussite équilibré est alors la moyenne de ces taux de réussite par classe : 

𝐴𝑐𝑐_𝑒𝑞𝑢 =
1

𝐾
∑𝐴𝑐𝑐𝑘

𝐾

𝑘=1

 

II.4.4. Matrice de confusion en classification binaire 

D’autres métriques permettant d’évaluer la qualité d’un modèle entraîné pour une 
classification binaire peuvent être construites à partir de la matrice de confusion. Une 
matrice de confusion est un tableau récapitulatif dans lequel les résultats de classification 
sont ventilés selon la classe réelle (lignes) et la classe prédite (colonnes). 
 
On note ici A le nombre de points dont le label réel 1 coïncide avec le label attribué par le 
classifieur entraîné. L’autre entrée diagonale D est définie de manière analogue : c’est le 
nombre de points dont le label prédit 0 est égal au label réel. Les entrées hors diagonale, 
notées B et C, représentent les deux types d’erreurs de classification, lorsque le label réel et 
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le label prédit ne coïncident pas. En pratique, on souhaite que ces deux valeurs soient aussi 
petites que possible : 

 
Figure 13: Matrice de confusion 

Le taux de réussite peut s’exprimer en fonction des quantités de la matrice de confusion 
représentées sur la Figure 13, sous la forme : 

𝐴𝑐𝑐 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
 

… et, de même, le taux de réussite calculé séparément sur chacune des deux classes s’écrit : 

𝐴𝑐𝑐1(𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é) =
𝐴

A + B
                             𝐴𝑐𝑐0(𝑠𝑝é𝑐𝑖𝑓𝑖𝑐𝑖𝑡é) =

𝐷

C + D
 

Dans le jargon de l’apprentissage automatique, ces métriques calculées séparément sur 
chaque classe sont souvent appelées, respectivement, la sensibilité (taux de vrais positifs – 
Acc1) et la spécificité (taux de vrais négatifs – Acc0). Le taux de réussite équilibré peut, de 
même, s’exprimer comme : 

𝐴𝑐𝑐_𝑒𝑞𝑢 =
1

2

𝐴

𝐴 + 𝐵
+
1

2

𝐷

𝐶 + 𝐷
 (𝑚𝑜𝑦𝑒𝑛𝑛𝑒 𝑑𝑒 𝑙𝑎 𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é 𝑒𝑡 𝑑𝑒 𝑙𝑎 𝑆𝑝é𝑐𝑖𝑓𝑖𝑐𝑖𝑡é) 

On peut également définir la précision, qui est la proportion de vrais positifs parmi ceux qui 
sont déclarés comme positifs : 

𝑝𝑟é𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴

𝐴 + 𝐶
 

Le F1-score est alors défini comme la moyenne harmonique de la précision et de la 
sensibilité : 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é

=
2𝐴

2𝐴 + 𝐵 + 𝐶
 

Le F1-score n’est élevé que si la précision et la sensibilité sont toutes les deux élevées ; il 
pénalise fortement un déséquilibre (par exemple précision très bonne mais sensibilité faible, 
ou l’inverse). 
 
Dans l’exemple de la figure 14, une classification binaire 
sur un jeu de données classique de détection de spam est 
réalisée. Ce jeu de données contient P = 4601 exemples : 
1813 e-mails « spam » et 2788 e-mails « non-spam ». 

Le taux de réussite est de 
2664+1622

4601
= 93,2%. Le 

taux de bonne classification « non-spam » est de 
2664

2664+124
= 95,6% et le taux de bonne classification « spam » est de 

1622

191+1622
= 89,5%. Le 

taux de réussite équilibré est donc la moyenne de ces deux taux et vaut 92,5%. 

Figure 14 : Matrice de confusion binaire 
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II.4.5. Matrice de confusion en classification multi-classes 

Dans le cas de la classification, une fois l'algorithme appliqué aux données, on peut 
représenter la matrice de confusion multi-classes associée aux jeux de données 
d'entraînement et de test pour évaluer le modèle. 
 
C'est un élément M de ℳ𝑐(ℕ) ainsi défini : pour tout (𝑖, 𝑗) ∈ ⟦0, 𝑐 − 1⟧2, 𝑚𝑖𝑗 est le nombre 

de données de test qui ont réellement i pour étiquette et auxquelles l'algorithme 
d'apprentissage statistique entraîné sur les données d'entraînement a attribué l'étiquette j. 
 
Plus la matrice de confusion est proche d'une matrice diagonale, meilleure est la qualité de 
la prédiction de l'algorithme. 
 

def matrice_confusion(y_true, y_pred, labels=None): 
    """ 
    Renvoie la matrice de confusion M telle que 
    M[i, j] = nombre d'exemples dont la vraie classe est labels[i] 
              et la classe prédite est labels[j]. 
    """ 
    y_true = np.asarray(y_true) 
    y_pred = np.asarray(y_pred) 
 
    if labels is None: 
        labels = np.unique(np.concatenate([y_true, y_pred])) 
    else: 
        labels = np.asarray(labels) 
 
    dico = {labels[j]: j for j in range(len(labels))} 
    mat = np.zeros((len(labels), len(labels)), dtype=int) 
 
    for i in range(len(y_true)): 
        mat[dico[y_true[i]], dico[y_pred[i]]] += 1 
    return mat, labels 

Exemple : 

y_true = ["chat","chien","chien","chat","lapin"] 
y_pred = ["chat","chat","chien","chat","lapin"] 
M, labels = matrice_confusion(y_true, y_pred) 
print(labels) 
print(M) 

 ['chat' 'chien' 'lapin'] 
   [[2 0 0] 
    [1 1 0] 
    [0 0 1]] 
    0.8 # Taux de réussite 

Le quotient 
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗
 donne le taux de réussite à partir de la matrice de confusion M : c'est la 

proportion de données dont les étiquettes ont été correctement prédites. 

def TAUX_REUSSITE (M): 
    return np.trace(M)/np.sum(M) 
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Voici un autre exemple avec un jeu de données de 1000 valeurs, où la matrice de confusion 
obtenue est la suivante : 

 

Le taux de réussite est de : 
 

𝐴𝑐𝑐 =  
𝑡𝑟(𝑀)

‖𝑀‖1
=
𝑡𝑟(𝑀)

∑ 𝑀𝑖,𝑗𝑖,𝑗
=
363 + 354 + 118

1000

= 0,835 (83,5%) 

 
 

 

 

II.5. Jeu de données pour les tests 

En général, ce qui nous intéresse, c’est la 
précision des prédictions obtenues lorsque l’on applique le modèle à des données de test, 
c’est-à-dire à des données nouvelles, jamais vues pendant l’apprentissage. 
 
En effet, supposons que l’on veuille développer un algorithme pour prédire le prix d’une 
action à partir de ses rendements passés. On peut entraîner la méthode à l’aide des 
rendements des six derniers mois. Mais on ne cherche pas vraiment à savoir si la méthode 
prédit correctement le prix de la semaine dernière ; on veut plutôt qu’elle prédise 
correctement le prix de demain ou du mois prochain. 
 
De même, supposons que l’on dispose, pour un certain nombre de patients, de mesures 
cliniques (par exemple poids, pression artérielle, taille, âge, antécédents familiaux), ainsi que 
d’une information indiquant si chaque patient est diabétique. On peut utiliser ces patients 
pour entraîner une méthode d’apprentissage statistique afin de prédire le risque de diabète 
à partir de ces mesures. En pratique, on veut que la méthode prévoie correctement le risque 
de diabète pour de futurs patients, à partir de leurs mesures cliniques. On s’intéresse moins 
à la précision sur les patients ayant servi à l’apprentissage, puisque l’on connaît déjà leur 
état. 
 

Ce qui nous intéresse vraiment n’est donc pas de savoir si 𝑓(𝑥𝑖) ≈ 𝑦𝑖 ; nous voulons plutôt 

savoir si  𝑓(𝑥0) ≈ 𝑦0 , où (x0, y0) est une observation de test, nouvelle, qui n’a pas été 
utilisée pour entraîner la méthode d’apprentissage statistique. Si nous disposions d’un grand 
nombre d’observations de test, nous pourrions calculer : 

1

𝑛
∑(𝑦𝑖0 − 𝑓(𝑥𝑖0))

2
𝑛

𝑖=1

 

… soit l’erreur quadratique moyenne de prédiction sur ces observations de test (xi0, yi0). 
 
Pour tester le modèle et avoir une idée du taux de bons résultats qu'il renvoie, on effectue 
alors une partition des données en un jeu d'entraînement et un jeu de test. Le jeu 
d'entraînement représente généralement 70% à 90% des données. 
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II.6. Normalisation des données 

Quand les données font intervenir des attributs d'ordres de grandeur très différents, il peut 
être utile d'effectuer une normalisation affine des données avant de leur appliquer un 
algorithme d'intelligence artificielle. 
 
La normalisation affine des données consiste à appliquer, pour chaque caractéristique Xi, 
une transformation du type 𝑋′𝑖 = 𝑎𝑖𝑋𝑖 + 𝑏𝑖 afin de rendre les variables comparables en 
échelle. Une forme très utilisée est la normalisation min–max, qui envoie chaque 
caractéristique dans [0,1] : 

𝑥′𝑖 =
𝑥𝑖 −𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
 

C’est particulièrement important pour les méthodes fondées sur des distances (k-NN, k-
moyennes) : si une caractéristique a une échelle beaucoup plus grande qu’une autre, elle 
domine artificiellement la distance euclidienne, et donc la décision (voisinage) ou la 
formation des clusters. La normalisation remet les variables sur une échelle comparable, ce 
qui rend l’usage de la distance plus pertinent. 
 
La Figure 15 illustre l’effet de la normalisation des données sur la caractéristique 1, 
initialement dans [10, 90] et envoyé dans [0,1] après normalisation : 
 

   

Figure 15 : Normalisation min-max des données 

 
 
Pour cela on peut utiliser l’algorithme qui suit et définir un nouveau tableau normalisé : 
 

def NORMALISATION_AFFINE(x): 
    m,M = min(x),max(x) 
    return (x-m)/(M-m) 

 
 


